Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículos

Vol. 18 No 2 (2015): Julio

RACIOCÍNIO GEOMÉTRICO VERSUS DEFINIÇÃO DE CONCEITOS: A DEFINIÇÃO DE QUADRADO COM ALUNOS DE 6.º ANO DE ESCOLARIDADE

DOI
https://doi.org/10.12802/relime.13.1821
Soumis
juillet 1, 2023
Publiée
2015-07-31

Résumé

La géométrie malgré d'être considéré comme un problème majeur reste, cependant, un sujet dans lequel les élèves révèlent encore beaucoup de difficultés. Dans cet article, nous avons analysé un groupe d'étudiants de la 6eme année, sur la façon dont ils voyaient et présentaient la définition de carré. Cette recherche a permis de caractériser la position de chacun des élèves face à son raisonnement géométrique, basé sur les niveaux de van Hiele. Les résultats obtenus permettent de conclure que le niveau de raisonnement géométrique présenté par les étudiants est moins que souhaitable et nécessaire pour les étudiants à ce stade de l'apprentissage de la géométrie. En outre, la définition d'un carré présenté par la plupart des étudiants est basée uniquement sur les compatibilités des côtés correspondants. Ainsi, les deux résultats montrent que les élèves ont des difficultés dans la hiérarchie des propriétés géométriques, fait que les auteurs considèrent pertinent d'étudier plus avant, dans le domaine des causes possibles, à la fois en termes de formes d'intervention dans la salle de classe et dans la formation initiale et continue des enseignants.

Références

  1. Battista, M. T. (2007). The Development of Geometric and Spatial Thinking. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 843-908).Second Handbook of Research on Mathematics Teaching and Learning (pp. 843-908).Second Handbook of Research on Mathematics Teaching and Learning NY, United States: NCTM.
  2. Bogdan, R. e Biklen, S. (1994). Investigação qualitativa em educação: uma introdução à teoria e aos métodos. Porto, Portugal: Porto Editora.
  3. Clements, D. H. (2003). Teaching and learning geometry. In J. Kilpatrick, W. G. Martin & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp.151-178). Reston, United States: National Council of Teacher of Mathematics.
  4. Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420-464). NewYork, UnitedHandbook of research on mathematics teaching and learning (pp. 420-464). NewYork, UnitedHandbook of research on mathematics teaching and learning States: Macmillan.
  5. Clements, D. H., Battista, M.T., & Sarama, J. (2001). Logo and Geometry. Journal for Research in Mathematics Education, 10, 1-177.
  6. Cohen, L., Manion, L., & Morrison, K. (2007). Research Methods in Education (6th Ed.). New York, United States: Routledge.
  7. de Villiers, M. (1998). To teach definitions in Geometry or teach to define? In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 248-255). Stellenbosch, South Africa: University of Stellenbosch.
  8. Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, Netherlands: Reidel.
  9. Fuys, D., Geddes, D. & Tischler, R. (1988). The Van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education 3. New York, United States: NCTM.
  10. Gomes, A., Ribeiro, C. M., Martins, F., Aires, A. P., Campos, H., Caseiro, A., Poças, R. (2012). Tarefas em Geometria – Da sala de aula para a formação de formação de professores.
  11. Descrição de um projeto. In GTI-APM (Eds.), Atas do XXIIISIEM – Seminário de Investigação em Educação Matemática (pp. 761-763). Coimbra, Portugal: Associação de Professores de Matemática.
  12. Goulding, M., Rowland, T., & Barber, P. (2002). Does it matter? Primary teacher trainees’ subject knowledge in mathematics. British Educational Research Journal, 28(5), 689-704.
  13. Gray, E., & Tall, D. (2002). Abstraction as a natural process of mental compression. In A. D. Cockburn & E. Nardi (Eds.), Proceedings of the 26th
  14. Proceedings of the 26th Proceedings of the 26 Conference of the Internacional
  15. Group for the Psychology of Mathematics Education (Vol. 1, pp. 115-120). Norwick, United Kingdom: University of East Anglia.
  16. Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: in search of a framework. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th Conference of the International
  17. Group for the Psychology of Mathematics Education (Vol. 1, pp. 3-19). Valencia, Spain: Universidad de Valencia.
  18. Gutiérrez, A., Jaime, A., & Fortuny, J. M. (1991). An alternative paradigm to assess the acquisition of van Hiele levels. Journal for Research in Mathematics Education, 22(3), 237-251.
  19. Hiebert, J., & Wearne, D. (1993). Instructional Task, Classroom Discourse, and Students’Learning in Second Grade. American Educational Research Journal, 30, 393-425. doi: 10.3102/00028312030002393
  20. Jones, K. (2002). Issues in the teaching and learning of geometry. In L. Haggarty (Ed.), Aspects of Teaching Secondary Mathematics (121-139). London, United Kingdom: Routledge.
  21. NCTM. (1991). Professional standards for teaching mathematics. Reston, United States of America: National Council of Teachers of Mathematics.
  22. NCTM. (2007). Princípios e Normas para a Matemática Escolar. Lisboa, Portugal: Associação de Professores de Matemática.
  23. Pandiscio, E., & Orton, R. E. (1998). Geometry and metacognition: An analysis of Piaget’s and van Hiele’s perspectives. Focus on Learning Problems in Mathematics, 20(2-3), 78-87.
  24. Ponte, J. P., Serrazina, L., Guimarães, H., Breda, A., Guimarães, F., Sousa, H., & Oliveira, P. (2007). Programa de Matemática do Ensino Básico. Lisboa, Portugal: Ministério da Educação – Direção Geral da Inovação e Desenvolvimento Curricular.
  25. Rowan, B., Chiang, F. S., & Miller, R. J. (1997). Using research on employee’s performance to study the effects of teachers on student achievement. Sociology of Education, 70, 256-284.
  26. Rowland, T., Martyn, S., Barber, P., & Heal, C. (2000). Primary teacher trainees’mathematics subject knowledge and classroom performance. In T. Rowland & C. Morgan (Eds.), Research
  27. in Mathematics Education (Vol. 2, pp. 3-18). London, United Kingdom: British Society for Research into Learning Mathematics.
  28. Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York, United States: Routledge.
  29. Senk, S. L. (1989). Van Hiele levels and achievement in writing geometry proofs. Journal for Research in Mathematics Education, 20(3), 309-321.
  30. Swafford, J., Jones, G. A., & Thorton, C. A. (1997). Increased knowledge in geometry and instructional practice. Journal for Research in Mathematics Education, 28(4), 467-483.
  31. Tall, D. (2004). Thinking through Three Worlds Of Mathematics. Proceedings of the 28th Conference of the Internacional Group for the Psychology of Mathematics Education, Bergen, Norway.
  32. van Hiele, P. M. (1986). Structure and insight: A Theory of Mathematics Education. Orlando, United States of America: Academic Press.
  33. van der Sandt, S. (2007). Pre-service geometry education in South-Africa: Atypical case? Issues in the Undergraduate Mathematics Preparation of School Teachers: The journal, I, 1-9. Acedido desde: http://www.k12prep.math.ttu.edu/journal/journal.shtml.
  34. Vygotsky, L. S. (1978). Mind in Society, The development of higher psychological processes. Cambridge, United Kingdom: Harvard University Press.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.