Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículos

Vol. 18 No 1 (2015): Marzo

MEMORIA SOBRE LA EMERGENCIA DE LAS FUNCIONES ELÍPTICAS

DOI
https://doi.org/10.12802/relime.13.1813
Soumis
juillet 2, 2023
Publiée
2015-03-31

Résumé

Dans ce mémoire nous répondons à certaines questions que nous avons posées sur et autour de l’émergence historique des fonctions elliptiques dans la première moitié du XIXe siècle. Tout d’abord, nous voulons déterminer les forces qui ont produit les tensions les plus importantes dans la discipline au cours de la période en question. Avec cela, nous proposons une hypothèse expliquant le changement dans le domaine de la pensée mathématique qui a abouti à des fonctions de préférence au lieu d’intégrales elliptiques. Cette hypothèse est enracinée dans l’état de l’analyse et l’algèbre à l’époque de l’émergence. Tout de suite nous montrerons que les constructions d’Abel et de Jacobi supportent notre hypothèse de travail. Enfin, nous esquissons quelques conclusions sur nos réflexions.

Références

  1. Abel, N. H. (1827). Recherches sur les fonctions elliptiques. In A. L. Crelle (Ed.), Journal für die reine und angewandte Mathematik, Cahier 2 (pp. 101-181). Berlín, Alemania : G. Reimer.
  2. Abel, N. H. (1828). Recherches sur les fonctions elliptiques. En A. L. Crelle (Ed.), Journal für die reine und angewandte Mathematik, Cahier 3 (pp. 160-190). Berlín, Alemania: G. Reimer.
  3. Akhiezer, N. I. (1990). Elements of the Theory of Elliptic Functions (H. H. McFader, Trad.) Providence, Estados Unidos de América: American Mathematical Society. (Reimpreso de Элементы теории эллиптических функций, por N. I. Akjiezer (Н. И. Ахиезер), 1970, Москва (Moscú), Сою́з Сове́́́тских Социалистических Республик (Unión de Repúblicas Socialistas Soviéticas): Nauka (Наука))
  4. Bellachi, G. (1894). Introduzione storica alla teoria delle funzione ellittice. Firenze, Italia: Barberà.
  5. Briot, M. & Bouquet, M. (1859). Théorie des fonctions doublement périodiques et, en particulier, des fonctions elliptiques. Paris, France: Mallet-Bachelier.
  6. Cauchy, A.-L. (1825). Mémoire sur les intégrales définies prises entre des limites imaginaires. Paris, France: Bure Frères.
  7. Cooke, R. (2005). C. G. J. Book on Elliptic Functions (1829). In I. Grattan-Guinness (Ed.), Landmark Writings in Western Mathematics 1640-1940 (pp. 412-430). Amsterdam, Holanda: Elsevier.
  8. Euler, L. (1761). De integratione aequationis differentialis. In Novi Commentarii academiae scientiarum Petropolitanae (Tomus VI, pp. 37-57). Petropoli (San Petersburgo), Rusia: Typis Academiæ.
  9. Euler, L. (1761). Demonstratio theorematis et solutio problematis in actis erud. Lipsiensibus propositorum. In Novi Commentarii academiae scientiarum Petropolitanae (Tomus VII, pp. 128-162). Petropoli (San Petersburgo), Rusia: Typis Academiæ.
  10. Gauss, C. F. (1801). Disquisitiones Arithmeticae. Lipsiae (Leipzig), Germania (Alemania): Commissis apud Gerh. Fleische.
  11. Hadlock, C. (1978). Field Theory and its Classical Problems. Providence, United States of America : The Mathematical Association of America.
  12. Hernández, U. & Palacio, O. (2009). División de la lemniscata: Geometría, Análisis, Álgebra (Tesis inédita de pregrado). Universidad del Tolima, Ibagué, Colombia.
  13. Jacobi, C. G. J. (1829). Fundamenta nova theoriae functionum ellipticarum. Regiomonti (Königsberg), Alemania: Sumptibus fratrum Bornträger.
  14. Kragh Sørensen, H. (2010). The Mathematics of Niels Henrik Abel, Continuation and New Approaches in Mathematics during the 1820s. Aarhus, Dinamarca: Aarhus Universitet.
  15. Lang, S. (1987). Elliptic Functions. New York, United States of America: Springer.
  16. Lagrange, J. (1868). Sur l’intégration de quelques équations différentielles dont les indéterminées sont séparées, mais dont chaque membre en particulier n’est point intégrable. In J. A. Serret (Ed.), Œuvres de Lagrange (Tome III, pp. 5-33). Paris, France: Gauthier-Villars. (Reimpreso de Miscellanea Taurinensia, Tome IV, 1766-1769. Turín, Italia.)
  17. Lagrange, J. (1869). Réflexions sur la résolution algébrique des équations. In J. A. Serret (Ed.), Œuvres de Lagrange, Tome troisième, (pp. 205-421). Paris, France: Gauthier-Villars. (Reimpreso de Nouveaux Mémoires de l’Académie royale des Sciences et Belles-Lettres de Berlin, 1770-1771. Berlín, Alemania: Chez Chrétien Frédéric Voss.)
  18. Legendre, A.-M. (1811). Exercices de calcul intégral sur divers ordres de transcendantes et sur les quadratures. Paris, France: Courcier.
  19. Murcia, J. & Saldaña, A. (2011). Las funciones elípticas de Abel (Tesis inédita de Especialización). Universidad del Tolima, Ibagué, Colombia.
  20. Pareja, G. Solanilla, L. & Tamayo, A. (2010). Integrales elípticas con notas históricas. Medellín, Colombia: Sello Universidad de Medellín.
  21. Pareja, G. Solanilla, L. & Tamayo, A. (2013). Indicios del papel preponderante del álgebra en la emergencia de las funciones elípticas. Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia - Sede Medellín, 2 (2), 43-52.
  22. Recalde, L. (2010). La teoría de las funciones de Baire. La constitución de lo discontinuo como objeto matemático. Cali, Colombia: Universidad del Valle.
  23. Remmert, R. C. (1991). Theory of Complex Functions. New York, United States of America: Springer.
  24. Schubring, G. (2005). Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17-19 th Century. France and Germany. New York, United States of America: Springer.
  25. anilla, L. (2011). Las transformaciones elípticas de Jacobi. Ibagué, Colombia: Universidad del Tolima.
  26. Tamayo, A. (2005). Geometría y análisis en la historia temprana de las integrales elípticas (Tesis inédita de maestría). Universidad de Antioquia, Medellín, Colombia.
  27. Referencias
  28. Bottazzini, U. & Gray, J. (2013). Hidden Harmony - Geometric Fantasies: The Rise of Complex Function Theory. New York, United States of America: Springer.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.

Articles les plus lus par le même auteur ou la même autrice