Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículo Especial

Vol. 13 No 4(II) (2010): Número Especial /Diciembre

HACIA UN CAMPO DE PRÁCTICAS SOCIALES COMO FUNDAMENTO PARA REDISEÑAR EL DISCURSO ESCOLAR DEL CÁLCULO INTEGRAL

Soumis
décembre 21, 2023
Publiée
2010-01-25

Résumé

Nous partons des problèmes qui consistent en séparation entre le conceptuel et l'algorithmique en enseignement du Calcul intégral. Pour s'occuper des problèmes conformément à sa nature, nous nous appuyons sur l'approche théorique soi-disant la l'socioépistémologie ainsi que nous nous aidons aussi de la théorie des champs conceptuels. Avec base dans le précédent nous présentons une espèce de champ de pratiques sociales organisé autour de trois axes: prédiction, accumulation et constantification de ce qui est variable. Il a été nécessaire de construire le champ, autant que possible, depuis de divers plans: la genèse historique, la genèse contemporaine et l'artificielle genèse. Pour prendre fin, nous argumentons sur la viabilité de considérer aux pratiques sociales comme unité d'analyse pour redessiner le discours mathématique scolaire, en particulier du Calcul intégral. De manière que la prédiction (immergée sur un champ de pratiques sociales) par sa nature entrelace les connaissances sans une frontière rigide entre des concepts, sans un ordre linéaire, et qu'il filtre la domination des mathématiques.

Références

  1. Alanis, J. A. (1996), La Predicción: un hilo conductor para el rediseño del discurso escolar del Cálculo. Tesis de doctorado, Cinvestav-IPN, México.
  2. Cantoral, R. (1983). Procesos del cálculo y su desarrollo conceptual. Tesis de Maestria en Ciencias. Cinvestav-IPN. Sección de Matemática Educativa. México.
  3. Cantoral, R. (1990). Desequilibrio y equilibración. Categorias relativas a la apropiación de una base de significaciones propias del pensamiento fisico para conceptos y procesos matemáticos de la teoria elemental de las funciones analiticas. Tesis de doctorado, Cinvestav-IPN, México.
  4. Cantoral, R. (2001). Matemática Educativa: Un estudio de la formación social de la Analiticidad.México: Grupo Editorial Iberoamérica.
  5. Cantoral, R. (2004). Desarrollo del pensamiento y lenguaje variacional, una mirada socioepistemológica. Acta Latinoamericana de Matemática Educativa 17(1), 1-9.
  6. Chevallard, Y., Bosch, M., Gascón, J. (1997). Estudiar Matemáticas: El eslabón perdido entre enseñanza y aprendizaje. España: Ed. ICE-Horsori.
  7. Cordero, F. (1994). Cognición de la Integral y la construcción de sus significados: un estudio del Discurso Matemático Escolar. Tesis de Doctorado, Cinvestav-IPN, México.
  8. Cordero , F. (2001). La distinción entre construcciones del Cálculo. Una epistemología a través de la actividad humana. Revista Latinoamericana de Investigación en Matemática Educativa 4(2), 103-128.
  9. Cordero, F. (2003). Reconstrucción de significados del Calculo integral: La noción de acumulación como una argumentación, México: Grupo Editorial Iberoamérica.
  10. Cordero, F. (2005). El rol de algunas categorias del conocimiento matemático en educación superior. Una socioepistemologia de la integral. Revista Latinoamericana de Investigación en Matemática Educativa 8 (3), 265-285.
  11. En Hernández (2006) aparece un ejemplo de la matematización de la predicción en la Cinemática.
  12. En Ramos (2005) aparece un ejemplo de la matematización de la predicción en la Economia.
  13. Farfan, R. (1997). Ingenieria didáctica, un estudio de la variación y el cambio. México, Gripes Editorial Iberoamérica.
  14. Garcia, R. (2000). El conocimiento en construcción. De las formulaciones de Piaget a la teoria de sistemas complejos. España: Gedisa.
  15. Heath, T.1 (1953) The works of Archimedes. USA: Dover Publications (reprint of 1897 ed.) Hernández, H. (2006). Una visión socioepistemológica de la matematización del movimiento del bunomia ile Newton a la serie de Taylor. Tesis de Maestría. Universidad Autónoma de Chiapas, México
  16. Lenkersdorf, C. (2002). Tojolabal para principiantes. Lengua y cosmovisión mayas en Chiapas México Plaza y Valdés, segunda edición.
  17. Marcolini, My Perales, J. (2005). La noción de predicción: Análisis y propuesta didáctica para la educación universitaria. Revista Latinoamericana de Investigación en Matemática Educativa (1), 25-68.
  18. Mañoz, G. (2005a). Dialéctica entre lo conceptual y lo algoritmico relativa a prácticas sociales con Calculo integral. En J. Lezama, M. Sánchez, J. G. Molina (Eds.). Acta Latinoamericana de Matematica Educativa 18, 597-603. México: Clame A.C.
  19. Muñoz, G. (2005b), Naturaleza de un campo conceptual del Cálculo infinitesimal: una visión epistemológica. En J. Lezama, M. Sánchez, J. G. Molina (Eds.), Acta Latinoamericana de Matemática Educativa 18, 589-595. México: Clame A.C.
  20. Muñoz, G. (2006a). Dialéctica entre lo conceptual y lo algoritmico relativa a un campo de practicas sociales asociadas al Cálculo integral: aspectos epistemológicos, cognitivos y didacticon Tesis de doctorado en ciencias, Departamento de Matemática Educativa del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México.
  21. Muñoz, G. (20066). Relación dialéctica entre lo conceptual y lo algoritmico relativa a un campo de prácticas sociales asociadas al Cálculo integral. En R. Cantoral, O. Covián, R. Farfan, J. Lezama & A. Romo (Eds.), Investigaciones sobre enseñanza y aprendizaje de las matemáticas: un reporte Iberoamericano (pp. 423-451). México: Clame A.C. y Ediciones Diaz de Santos.
  22. Muñoz, G. (2007). Rediseño del Cálculo integral escolar fundamentado en la Predicción. En C. Dolores, G. Martinez, R. Farfan, C. Carrillo, 1. López & C. Navarro (Eds.). Matemática Educativa. Algunos aspectos de la socioepistemología y la visualización en el aula (pp. 27-76), Madrid: Ediciones Díaz de Santos; Guerrero: Universidad Autónoma de Guerrero
  23. Mañoz, G. (2010) Una Resignificación de las Ecuaciones Diferenciales, fundamentada en la Predicción: elementos Epistemologicos, Cognitivos y Didácticos. México: Universidad Autonoma de Chiapas (Colección libros de consulta para Ciencia y Tecnologia).
  24. Piaget, J. & Garcia R. (1994). Pricogenesis e Historia de la Ciencia (6a. ed.). México: Siglo XXI
  25. Ramos, S E. (2005). Analists socioepistemológico de los procesos de matematización de la predicción en la Economia. Tesis de Maestria en Ciencias. Universidad Autónoma de Chiapas, México.
  26. Vergnaud, G. (1981). Quelques Orientations Theoriques et Methodologiques des Recherches Francaises en Didactique des Mathematiques. Proceedings of the International Group for the Prychology of Mathematics Education (pp. 7-17).
  27. Vergnaud, G. (1990a). La Théorie des Champs Conceptuels. Recherches en Didactique des Mathématiques 10 (13), 133-170.
  28. Vergnaud, G. (1990b). Epistemology and Psychology of Mathematics Education. En Nesher y Kilpatrick (Eds.), Mathematics and Cognition: A Research Synthesis by the International Group for the Psychology of Mathematics Education (p. 14-30). Cambridge: University Press.
  29. Vergnaud, G. (1991). El niño, las matemáticas y la realidad. México: Editorial Trillas.
  30. Vergnaud, G. (1998). Towards a Cognitive Theory of Practice. En Sierpinska, A. y Kilpatrick, J. (Eds.), Mathematics Education as a Research Domain: A Search for Identity (pp. 227- 240). Great Britain: Kluwer Academic Publishers.
  31. Vygotski, L. S. (1982). Obras Escogidas II. Incluye Pensamiento y Lenguaje, y Conferencias sobre Psicología. España: Ed. Visor.
  32. Wertsch, J. V. (1993). Voces de la Mente. Un enfoque sociocultural para el estudio de la Acción Mediada. España: Ed. Visor.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.