Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículo Especial

Vol. 13 No 4(I) (2010): Número Especial /Diciembre

ARTICULANDO EL SABER MATEMÁTICO A TRAVÉS DE PRÁCTICAS SOCIALES. EL CASO DE LO PERIÓDICO

Soumis
décembre 26, 2023
Publiée
2010-01-13

Résumé

Nous présentons les résultats qui support la thèse socioepistemologique au sujet d'un savoir mathématique articulé et fonctionnel si l'explication sur la construction de ce savoir change de la concentration d'objets vers les pratiques. Pendant la première s'appuie sur une idée de préexistence à la marge de l'expérience de l'individu et les explications émergentes des meme mathématiques, à travers de la socioépistémologie de le périodique qui se présent maintenant, ca c'est ouvre la possibilité d'avoir des autres cadres de référence qu'ils nous permettent de se rendre compte, a travers des pratiques sociaux, de ca qui constitue le savoir mathématique. La méthodologie sur laquelle nous nous appuyons elle propose l'admission de ces pratiques sous des dessins dans ceux qui se développent d'une manière intentionnelle. De cette manière, c'est possible offrir évidence sur la resignification du savoir dans l'organisation des groupes humains, en favorisant des articulations significatives.

Références

  1. Arrieta, J. (2003). Las prácticas de modelación como proceso de matematización en el aula. (Tesis de Doctorado). Cinvestav, México.
  2. Bajpai, A. C., Calus, L.M., & Fairley, J.A. (1977). Matemáticas para estudiantes de Ingenieria y Ciencias (1). México: Limusa.
  3. Boyce, W. y DiPrima, R. (1987). Ecuaciones Diferenciales y problemas con valores en la frontera. México: Limusa.
  4. Buendía, G. (2004). Una epistemologia del aspecto periódico de las funciones en un marco de prácticas sociales. (Tesis de Doctorado). Cinvestav, México.
  5. Buendia, G. & Cordero, F. (2005). Prediction and the periodic aspect as generators of knowledge in a social practice framework. A socioepistemological study. Educational Studies in Mathematics. Kluwer publishers, 58 (3), 299-333.
  6. Buendía, G. (2006a). La periodicidad en el sistema didáctico: una articulación a la luz de la socioepistemologia. En G. Martínez (ed), Acta Latinoamericana de Matemática Educativa 19 (pp. 812-81). México: Comité Latinoamericano de Matemática Educativa AC.
  7. Buendia, G. (2006b). Una socioepistemologia del aspecto periódico de las funciones. Revista Latinoamericana de Matemática Educativa, 9 (2), 227-252.
  8. Buendia, G. y Ordoñez, A. (2009) El comportamiento periódico en la relación de una función y sus derivadas: significados a partir de la variación. Revista Latinoamericana de Matemática Educativa, 12(1), 7-28
  9. Buendia, G. y Montiel, G. (2009) Acercamiento socioepistemológico a la historia de las funciones trigonométricas. En P. Lestón (ed), Acta Latinoamericana de Matemática Educativa 22. México, DF: Colegio Mexicano de Matemática Educativa A. C. y Comité Latinoamericano de Matemática Educativa A. C.
  10. Callahan, J., Cox, D., Hoffman, K., O'Shea, D., Pollatsek, H. & Senecnal. L. (1992). Periodicidad. En Calculus in comment. (pp. 413-158). USA: Me Milian.
  11. Castañeda, A. (2006) Formación de un discurso escolar: el caso del máximo de una función en la obra de L'Hopital y Maria G. Agnesi, Revista Latinoamericana de Matemática Educativa, 9(2), 253-266.
  12. Cantoral, R. y Farfan, R. (1998). Pensamiento y lenguaje variacional en la introducción del análisis. Epsilon, 42 (3), 854-856.
  13. Cantoral, R. (2000). Pasado, presente y futuro de un paradigma de investigación en Matemática Educativa. En R. Farfin, C. Matias, D. Sánchez, A. Tavarez (eds). Acta Latinoamericana de Matematica Educativa 13 (pp. 54-62). México: Grupo Editorial Iberoamérica.
  14. Cantoral, R. (2001). Matemática Educativa. Un estudio de la formación social de la analiticidad. México: Grupo Editorial Iberoamérica.
  15. Confrey, J. y Costa, S. (1996). A Critique of the Selection of "Mathematical objects" as Central Metaphor for Advanced Mathematical Thinking. International Journal of Computers for Mathematical Learning, I (2), 139-168.
  16. Cordero, F. (2003) Lo social en el conocimiento matemático: reconstrucción de argumentos y significados. En J. Delgado (ed), Acta Latinoamericana de Matemática Educativa, 16 (pp. 73-78) Chile: Lorena Impresores, Ltda.
  17. Cordero, F. (2006). El uso de las gráficas en el discurso del cálculo escolar. Una visión socioepistemológica. En Cantoral, R. Covián, O., Farfan, R. Lezama, J, Romo, A. (eds) Investigaciones sobre enseñanza y aprendizaje de las matemáticas: un reporte iberoamericano (pp. 265-286) México: Diaz de Santos y Comité Latinoamericano de Matemática Educativa AC.
  18. Cordero, F. y Flores, R. (2007). El uso de las gráficas en el discurso matemático escolar. Estudio socioepistemológico en el nivel básico a través de libros de texto. Revista Latinoamericana de Matemática Educativa, 10(1), 7-38.
  19. Cordero, F. y Martinez, J. (2001). La comprensión de la periodicidad en los contextos discreto y continuo. En Acta Latinoamericana de Matemática Educativa 14 (pp. 422-431). México: Grupo Editorial Iberoamérica
  20. Covián, O. (2005). El papel del conocimiento matemático en la construcción de la vivienda tradicional: el caso de la cultura maya. (Tesis Inédita de Maestria). Cinvestav, México.
  21. Dreyfus, T. & Eisenberg, T. (1983). The Function Concept in College Students: Linearity, Smoothness an Periodicity. En Focus on Learning Problems in Mathematics, 5(3 & 4), 119-132
  22. Farfan, R. (1997). Ingenieria didáctica: un estudio de la variación y el cambio. México: Grupo Editorial Iberoamérica
  23. Ferrari, M. y Farfan, R. (2009). Un estudio socioepistemológico de lo logaritmico: la construcción de una red de modelos. Revista Latinoamericana de Matemática Educativa, 11 (3), 309-354.
  24. Katz, V. (1987). The Calculus of the Trigonometric Functions. Historia Mathematica, (14), 311-324.
  25. Montiel, G. (2005). Estudio socioepistemológico de la función trigonométrica. (Tesis de Doctorado). Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, México.
  26. North, A. (1997). La matemática como elemento en la historia del pensamiento. En Sigma. El mundo de las matemáticas. Tomo 1. (pp. 325-338) España: Editorial Grijalbo.
  27. Pannekoek, A. (1961). A history of astronomy. NY, USA: Dover.
  28. Suárez, L. (2008). Modelación Graficación, una categoria para la matemática escolar. Resultados de un estudio socioepistemológico. (Tesis de Doctorado). Cinvestav, México.
  29. Thomas, G. y Finney, R. (1998). Cálculo de una variable. México: Addison Wesley Longman de México, S.A. de C.V.
  30. Vázquez, R. (2008). Estudio de lo periódico en diferentes contextos: Identificación y uso de la unidad de análisis. (Tesis Inédita de maestria). Universidad Autónoma de Chiapas, México.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.