Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículo Especial

Vol. 9 No 4 (2006): Número Especial/ Diciembre

SEMIOSIS AS A MULTIMODAL PROCESS

Soumis
octobre 28, 2024
Publiée
2006-12-30

Résumé

Les approches sémiotiques classiques sont trop étroites pour étudier les phénomènes didactique de la salle de classe de mathématiques. En plus des ressources sémiotiques traditionnelles (comme les symboles écrits et la langue) utilisées par les élèves et les enseignants, d’autres ressources sémiotiques importantes comprennent les gestes, les regards, les dessins et les modes extra-langagiers d’expression. Ces dernières rentrent difficilement dans les définitions classiques des systèmes sémiotiques. Afin de surmonter cette difficulté, dans cet article j’adopte une perspective vygotskienne et je présente une notion élargie de système sémiotique, le faisceau sémiotique, qui s’avère particulièrement utile afin d’inclure toutes les ressources sémiotiques que nous rencontrons dans les processus d’apprentissage des mathématiques. Dans cet article je souligne quelques points critiques concernant la description usuelle des systèmes sémiotiques; j’offre une discussion du paradigme multimodal et incarné lequel a émergé ces dernières années dans le cadre des recherches menées en psycholinguistique et neuroscience. Suite à cela j’analyse les gestes d’un point de vue sémiotique. Après j’introduis la notion de paquet sémiotique et l’exemplifie à travers une étude de cas.

Références

  1. Arzarello, F. (in press). Mathematical landscapes and their inhabitants: perceptions, languages, theories, Proceedings ICME 10, Plenary Lecture.
  2. Arzarello F., L.Bazzini, Chiappini G.P. (1994), Intensional semantics as a tool to analyse algebraic thinking, Rendiconti del Seminario Matematico dell’Università di Torino, 52 (1), 105-125.
  3. Arzarello, F & Edwards, L. (2005). Gesture and the Construction of Mathematical Meaning (Research Forum 2), Proc. 29th Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 1, pp. 122-145). Melbourne, AU: PME.
  4. Arzarello F. & Robutti, O. (2004). Approaching functions through motion experiments. In: R. Nemirovsky, M. Borba & C. DiMattia (eds.), Bodily Activity and Imagination in Mathematics Learning, PME Special Issue of Educational Studies in Mathematics, 57.3, CD-Rom, Chapter 1.
  5. Arzarello, F., Ferrara, F., Paola, D., Robutti, O., (2005). The genesis of signs by gestures. The case of Gustavo, Proc. 29th Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 1, pp. 73-80). Melbourne, AU: PME.
  6. Arzarello, F., Bazzini, L., Ferrara, F., Robutti, O., Sabena, C., Villa, B. (2006). Will Penelope choose another bridegroom? Looking for an answer through signs, Proc. 30th Conf. of the Int. Group for the Psychology of Mathematics Education. Prague.
  7. Arzarello, F. & Robutti, O. (to appear). Framing the embodied mind approach within a multimodal paradigm, in: Lyn English, M. Bartolini Bussi, G. Jones, R. Lesh e D. Tirosh (ed.), Handbook of International Research in Mathematics Education (LEA, USA), 2nd revised edition.
  8. Bara, B.G. & Tirassa, M. (1999). A mentalist framework for linguistic and extralinguistic communication. In: S. Bagnara (ed.), Proceedings of the 3rd European Conference on Cognitive Science. Siena, Italy. Roma: Istituto di Psicologia, CNR.
  9. Barbero R, Bazzini L., Ferrara F., Villa B. (in press). The Penelope’s story: learning through action, speech and gestures, Proc. CIEAEM 57, Piazza Armerina, Italy, July 2005.
  10. Bartolini, M.G. & Mariotti, M.A. (to appear). Semiotic mediation in the mathematics classroom, in: Lyn English, M. Bartolini Bussi, G. Jones, R. Lesh e D. Tirosh (ed.), Handbook of International Research in Mathematics Education (LEA, USA), 2nd revised edition.
  11. Bosch, M. & Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs, Recherches en Didactique des Mathématiques, 19 (1), 77-124.
  12. Bucciarelli, M. (in press). How the construction of mental models improve learning, Mind and Society.
  13. Chevallard, Y. (1999), L’analyse des pratiques enseignantes en théorie anthropologique du didactique, Recherches en Didactique des Mathématiques, 19/2, 221-266.
  14. Cutica, I. & Bucciarelli, M. 2003. Gestures and the construction of models. The 2nd International Conference on Reasoning and Decision Making,Reasoning and understanding: Mental models, relevance and limited rationality approaches, Padova, March, the 17-18, 11.
  15. Detlefsen, M., 1986, Hilbert’s Program, Dordrecht: Reidel. Dörfler, W. (n.d.) How diagrammatic is mathematical reasoning? Retrieved May 4 2006, from http://www.math.uncc.edu/~sae/dg3/dorfler2.pdf
  16. Duval R. (1993). Registres de représentations sémiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, 5, 37-65. ULP, IREM Strasbourg.
  17. Duval, R. (1999). Conversion et articulation des représentations analogiques. Lille, France: I.U.F.M. Nord pas de Calais.
  18. Duval, R. (2001). The cognitive analysis of problems of comprehension in the learning of mathematics. Paper presented at the Semiotics Discussion Group of the 25th PME International Conference, Freudenthal Institute, The Netherlands, July 2001.
  19. Duval, R. (2002). The cognitive analysis of problems of comprehension in the learning of mathematics. Mediterranean Journal for Research in Mathematics Education, 1(2), 1- 16.
  20. Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics, Educational Studies in Mathematics, (61), 103-131.
  21. Ernest, P. (2006). A semiotic perspective of mathematical activity: the case of number, Educational Studies in Mathematics, (61), 67-101
  22. Frege, G. (1969). Funktion, Begriff, Bedeutung. Fünf logische Studien. Göttingen: Vandenhoeck & Company.
  23. Gallese, V. & Lakoff, G. (2005). The Brain’s Concepts: The Role of the Sensory-Motor System in Conceptual Knowledge. Cognitive Neuropsychology, 22(3/4), 455-479.
  24. Guala & Boero, 1999 Time complexity and Learning, Annals of the New York Academy of Sciences, June 30, 1999, 164-7.
  25. Goldin-Meadow, S. (2003). Hearing gestures: How our hands help us think. Chicago: Chicago University Press.
  26. Harper, E.. (1987). Ghosts of Diophantus, Educational Studies in Mathematics, Vol. 18, (75-90).
  27. Hilbert, D. (1962). Grundlagen der Geometrie, Stuttgart: Teubner (original edition in 1899).
  28. Lemaitre, A. (1905). Observations sur le langage interieur des enfants, Archives de psychologie, n.4,1-43
  29. Johnson-Laird P.N. 1983. Mental models: Towards a cognitive science of language, and consciousness. Cambridge University Press, Cambridge, UK.
  30. Johnson-Laird, P.N. 2001. Mental models and human reasoning. In Dupoux, E. (Ed.), Language, brain, and cognitive development: Essays in honor of Jacques Mehler, pp. 85-102. Cambridge, MA: The MIT Press.
  31. Kaput, J., Noss, R. & Hoyles, C.: 2002, Developing New Notations for a Learnable Mathematics in the Computational Era, in: English, L.D. (Ed.), Handbook of International Research in Mathematics Education: Lawrence Erlbaum Assoc., NJ, 51-75.
  32. Kita, S. (2000). How Representational Gestures Help Speaking. In McNeill, D. (ed.), Language and Gesture, pp. 162-185. Cambridge: Cambridge University Press.
  33. Malcom, N. & von Wright, G.H. (2001). Ludwig Wittgenstein : A Memoir. Oxford: Oxford University Press.
  34. McNeill, D. (1992) Hand and mind: What gestures reveal about thought. Chicago: Chicago University Press.
  35. Hartshorne, C. & Weiss, P. (Eds.) (1933), Collected Papers of Charles Sanders Peirce, vol. III, Cambridge (MA): Harvard University Press
  36. Kita, S. (2003). Interplay of gaze, hand, torso orientation, and language in pointing. In: S. Kita (ed.), Pointing. Where language, culture, and cognition meet. Mahwah: Erlbaum.
  37. Nemirovsky, R. (2003). Three conjectures concerning the relationship between body activity and understanding mathematics. In N.A. Pateman, B.J. Dougherty & J.T. Zilliox (Eds.), Proc. 27th Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 1, pp. 103-135). Honolulu, Hawai‘I: PME.
  38. Ogden, C.K. & Richards, I.A. (1923). The Meaning of Meaning. London: Routledge & Kegan.
  39. Rabardel, P. (1995). Les hommes et les technologies, une approche cognitive des instruments contemporains. Paris: Armand Colin.
  40. Radford, L. (2002). The seen, the spoken and the written. A semiotic approach to the problem of objectification of mathematical knowledge.For the Learning of Mathematics, 22(2), 14-23.
  41. Radford, L. (2003a). Gestures, Speech, and the Sprouting of Signs: A Semiotic-Cultural Approach to Students’ Types of Generalization. Mathematical Thinking and Learning, 5(1), 37–70.
  42. Radford, L., Demers, S., Guzmán, J. and Cerulli, M. (2003b). Calculators, graphs, gestures and the production of meaning, in: N. Pateman, B. Dougherty and J. Zilliox (eds.), Proceedings of the 27 Conference of the international group for the psychology of mathematics education (PME27 –PMENA25), University of Hawaii, Vol. 4, pp. 55-62.
  43. Radford, L. (2006). The Anthropology of Meaning, Educational Studies in Mathematics, (61), 39-65.
  44. Robutti, O. (2005). Hearing gestures in modelling activities with the use of technology, in F. Olivero & R. Sutherland (eds.), Proceedings of the 7th International Conference on Technology in Mathematics Teaching, University of Bristol, 252-261.
  45. Simpson, S.G: (1999). Subsystems of second order Arithmetic. New York: Springer.
  46. Sfard A. & McClain, 2002, Analyzing Tools: Perspectives on the Role of Designed Artifacts in Mathematics Learning, The Journal of the Learning Sciences, Volume 11, Numbers 2&3, Special Issue, 153-162.
  47. Steinbring, H. (2005). The Construction of New Mathematical Knowledge in Classroom Interaction. New York: Springer.
  48. Steinbring, H. (2006). What makes a sign a mathematical sign? An epistemological perspective on mathematical interaction, Educational Studies in Mathematics, (61), 133- 162.
  49. Vérillon, P., & Rabardel, P. (1995). Artefact and cognition: a contribution to the study of thought in relation to instrumented activity. European Journal of Psychology in Education, vol. IX, n°3.
  50. Vygotsky, L.S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
  51. Vygotsky, L. S. (1997). Collected works, Vol. 4 (R. Rieber, Ed.). New York: Plenum.
  52. Vygotsky, L.S. (1986), Thought and Language, Cambridge (MA): MIT Press.
  53. Wertsch, J. V., & Stone, C. A. (1985). The concept of internalization in Vygotsky’s account of the genesis of higher mental functions. In J.V. Wertsch (Ed.), Culture, communication and cognition: Vygotskian perspectives. Cambridge: Cambridge University Press.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.