Saltar para menu de navegação principal Saltar para conteúdo principal Saltar para rodapé do site

Artículos

Vol. 19 N.º 2 (2016): Julio

EVALUACIÓN ON-LINE DEL PROCESO DE RESOLUCIÓN DE PROBLEMAS MATEMÁTICOS EN ESTUDIANTES DE QUINTO Y SEXTO CURSO: AUTO-REGULACIÓN Y LOGRO

DOI
https://doi.org/10.12802/relime.13.1922
Enviado
junho 29, 2023
Publicado
2016-07-31

Resumo

O objetivo deste estudo foi testar um método de avaliação do proceso envolvido na resolução de problemas matemáticos, com base na metodologia da Tarefa Tripla e nos princípios da aprendizagem auto - regulada. Este protocolo foi administrado a 510 alunos de quinto e sexto ano do norte da Espanha, que fizeram duas tarefas de matemáticas com diferentes graus de dificuldade. Os resultados indicaram a presença de algumas estratégias de planeamento ineficazes e a falta de mecanismos de avaliação. No entanto, a análise das diferenças entre os grupos com um desempenho diferente na tarefa, revelou que os sub – processos envolvidos no planeamento, especialmente o uso de estratégias de representação da informação, como determinantes importantes para o sucesso dos alunos, exercendo um efeito maiorquando a dificuldade da tarefa aumento.

Referências

  1. Abdullah, N., Zakaria, E. & Halim, L. (2012). The Effect of a Thinking Strategy Approach through Visual Representation on Achievement and Conceptual Understanding in Solving Mathematical Word Problems. Asian Social Science, 8(16), 16-340. doi:10.5539/ass.v8n16p30
  2. Ahmed, W., Minnaert, A., Kuyper, H. & Van der Werf, G. (2012). Reciprocal relationships between math self-concept and math anxiety. Learning and individual differences, 22(3), 385-389. doi: 10.1016/j.lindif.2011.12.004
  3. Azevedo R. & Cromley, J.G. (2004). Does training of self- regulated learning facilitate student’s learning with hypermedia? Journal of Educational Psychology, 96(3), 523–535. doi: 10.1037/0022-0663.96.3.523
  4. Bransford, J. D. & Stein, B. S. (1993). The ideal problem solver: A guide for improving thinking, learning and creativity (2nd ed.). New York, United States: W. H. Freeman.
  5. Butler D. L. & Cartier S. C. (2005). Multiple complementary methods for understanding self-regulated learning as situated in context. Accepted for presentation at the April 2005 Annual Meetings of the American Educational Research Association, Montreal, QC.
  6. Cleary, T. J. & Chen, P. P. (2009). Self-regulation, motivation, and math achievement in middle school: Variations across grade level and math context. Journal of School Psychology, 47(5), 291–314. doi: 10.1016/j.jsp.2009.04.002
  7. Csíkos, C., Szitányi, J. & Keleme, R. (2012). The effects of using drawings in developing young children’s mathematical word problem solving: A design experiment with third-grade Hungarian students. Educational Studies in Mathematics, 81(1), 47–65. doi: 10.1007/s10649-011-9360-z
  8. Cueli, M., García, T. & González-Castro, P. (2013). Autorregulación y rendimiento académico en Matemáticas. [Self-regulatio and academic achievement in Mathematics]. Aula Abierta, 41(1), 39-48.
  9. Dettmers, S., Trautwein, U., Lüdtke, O., Goetz, T., Frenzel, A. & Pekrun, R. (2011). Students’ emotions during homework in mathematics: Testing a theoretical model of antecedents and achievement outcomes. Contemporary Educational Psychology, 36(1), 25–35. doi: 10.1016/j.lindif.2011.04.006
  10. Díez-Palomar, J., Menéndez, J. M. & Civil, M. (2011). Learning mathematics with adult learners: drawing from parents´ perspective. Revista Latinoamericana de Investigación en Matemática Educativa, 14(1), 71-94.
  11. Fidalgo, R., Torrance, M., Robledo, P. y García, J. N. (2009). Dos enfoques metacognitivos de intervención: auto-conocimiento del producto textual frente a auto-regulación del proceso de escritura. Revista de Psicología INFAD, International Journal of Developmental and Educational Psychology, 1(1), 303-312.
  12. Gálvez, G., Cosmelli, D., Cubillos, L., Leger, A. M., Mena, A., Tanter, E.,... y Soto-Andrade, J. (2011). Estrategias cognitivas para el cálculo mental. Revista Latinoamericana de Investigación en Matemática Educativa, 14(1), 9-40.
  13. García, T. y González-Pienda, J. A. (2012). Evaluación del proceso de Aprendizaje Autorregulado en el área de las Matemáticas mediante pizarras digitales. En J. Dulac y C. Alconada (Coord.),III Congreso Pizarra Digital. Publicación de comunicaciones (pp.105-117). Madrid, España:Pluma y Arroba.
  14. García, J. N., Rodríguez, C., Pacheco, D. & Diez, C. (2009). Influence of cognitive effort, sustained attention, working memory and ADHD symptoms in the process and product of written composition. An experimental study. Estudios de Psicología, 30(1), 31-50. doi: 10.1174/021093909787536326
  15. Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15.
  16. doi: 10.1177/00222194040370010201
  17. Greene, J. A. & Azevedo, R. (2010). The measurement of Learners’ Self-Regulated Cognitive and Metacognitive Processes While Using Computer-Based Learning Environments. Educational Psychologist, 45(4), 203-209. doi: 10.1080/00461520.2010.515935
  18. Hoffman, B. (2010). “I think I can, but I’m afraid to try”: The role of self-efficacy beliefs and mathematics anxiety in mathematics problem solving efficiency. Learning and Individual Differences, 20(3), 276–283. doi: 10.1016/j.lindif.2010.02.001
  19. Ifenthaler, D. (2008). Practical solutions for the diagnosis of progressing mental models. In D. Ifenthaler, P. Pirnay-Dummer & J. M. Spector (Eds.), Understanding models for learning and instruction. Essays in honor of Norbert M. Seel (pp. 43-61). New York, United States: Springer.
  20. Ifenthaler, D., Masduki, I. & Seel, N. M. (2011). The mystery of cognitive structure and how we can detect it. Tracking the development of cognitive structures over time. Instructional Science, 39(1), 41-61. doi: 10.1007/s11251-009-9097-6
  21. Ifenthaler, D. (2012). Determining the effectiveness of prompts for self-regulated learning in problem-solving scenarios. Educational Technology & Society, 15(1), 38–52.
  22. Jarero, M., Aparicio, E. & Sosa, L. (2013). Pruebas escritas como estrategia de evaluación de aprendizajes matemáticos. Un estudio de caso a nivel superior. Revista Latinoamericana de Investigación en Matemática Educativa, 16(2), 213-243. doi: 10.12802/relime.13.1623
  23. Kajamies, A., Vauras, M. & Kinnunen, R. (2010). Instructing low-achievers in mathematical word problem solving. Scandinavian Journal of Educational Research, 54(4), 335–355. doi: 10.1080/00313831.2010.493341
  24. Kramarski, B. & Gutman, M. (2006). How can self-regulated learning be supported in mathematical E-learning environments? Journal of Computer Assisted Learning, 22(1), 24–33. doi: 10.1111/j.1365-2729.2006.00157.x
  25. Lazakidou, G. & Retalis, S. (2010). Using computer supported collaborative learning strategies for helping students acquire self-regulated problem-solving skills in mathematics. Computers & Education 54(1), 3-13. doi: 10.1016/j.compedu.2009.02.020
  26. Montague, M. (2008). Self-Regulation and Mathematics Instruction. Learning Disabilities Research & Practice, 22(1), 75–83. doi: 10.1111/j.1540-5826.2007.00232.x
  27. Montague, M., Enders, G. & Dietz, S. (2011). Effects of cognitive strategy instruction on math problem solving of middle school students with learning disabilities. Learning Disability Quarterly, 34(4), 262-272. doi: 10.1177/0731948712463368
  28. Olive, T., Kellogg, R. T. & Piolat, A. (2002). The Triple Task technique for studying the processus of writing: why and How? In G. Rijlaarsdam (Series Ed.), Studies in Writing & T. Olive, & C. M. Levy (Vol. Eds.), Contemporary tools and techniques for studying writing (pp. 31–59).Dordrecht, Netherlands: Kluwer Academic Publishers.
  29. Ostad, A. & Sorenson, P. M. (2007). Private speech and strategy- use patterns: Bidirectional comparisons of students with and without mathematical disabilities in a developmental perspective. Journal of Learning Disabilities, 40(1), 2–14.
  30. Pantziara, M., Gagatsis, A. & Elia, I. (2009). Using diagrams as tools for the solution of non-routine mathematical problems. Educational Studies in Mathematics, 72(1), 39–60. doi: 10.1007/s10649-009-9181-5
  31. Pennequin, V., Sorel, O., Nanty, I. & Fontaine, R. (2010). Metacognition and low achievement in mathematics: The effect of training in the use of metacognitive skills to solve mathematical word problems. Thinking and Reasoning, 16(3), 198-220.
  32. doi: 10.1080/13546783.2010.509052
  33. Pereis, F., Dignath, C. & Schmitz, B. (2009). Is it possible to improve mathematical achievement by means of self-regulation strategies? Evaluation of an intervention in regular math clases. European Journal of Psychology of Education, 24(1), 17-29. doi: 10.1007/BF03173472
  34. Piolat, A., Kellogg, R. T. & Farioli, F. (2001). The Triple Task technique for studying writing processes: on which task is attention focused? Current Psychology Letters. Brain, Behavior and Cognition, 4, 67–83.
  35. Piolat, A. & Olive, T. (2000). Comment étudier le coût et le déroulement de la rédaction de textes? La méthode de la triple-tâche: Un bilan méthodologique. L’Anneé Psychologique, 100(3), 465–502.
  36. Piolat, A., Olive, T. & Kellogg, R.T. (2005). Cognitive effort during note taking. Applied Cognititive Psychology, 19(3), 291–312. doi: 10.1002/acp.1086
  37. Piolat, A., Barbier, M. L. & Roussey, J. Y. (2008). Fluency and cognitive effort during first and second-language note taking and writing by undergraduate students. European Psychologist, 13(2), 114–125. doi: 10.1027/1016-9040.13.2.114
  38. Rosário, P., Mourão, R., Núñez, J. C., González-Pienda, J. A. & Solano, P. (2008). Storytelling as a promoter of Self-Regulated Learning (SRL) throughoutschooling. In A. Valle, J.C. Núñez, R.G. Cabanach, J.A. González-Pienda, & S. Rodríguez (Eds.), Handbook of instructional resources and their applications in the classroom (pp. 107-122). New York, United States: Nova Science.
  39. Rosenzweig. C., Krawec, J. & Montague, M. (2011). Metacognitive strategy use of eighth-grade students with and without learning disabilities during mathematical problem solving: A Think-Aloud analysis. Journal of Learning Disabilities, 44(6), 508-520. doi: 10.1177/0022219410378445
  40. Schmitz, B. & Perel, P. (2011). Self-monitoring of self-regulation during math homework behaviour using standardized diaries. Metacognition and Learning, 6, 255–273. doi: 10.1007/s11409-011-9076-6
  41. Shea, P. & Bidjerano, T. (2010). Learning presence: Towards a theory of self-efficacy, self-regulation, and the development of a communities of inquiry in online and blended learning environments. Computer & Education, 55(4), 1721–1731. doi:10.1016/j.compedu.2010.07.017
  42. Stylianou, D. A. (2011). An examination of middle school students’ representation practices in mathematical problem solving through the lens of expert work: towards an organizing scheme.Educational Stududies in Mathematics, 76(3), 265–280. doi: 10.1007/s10649-010-9273-2
  43. Throndsen, I. (2011). Self-regulated learning of basic arithmetic skills: A longitudinal study. British Journal of Educational Psychology, 81, 558–578. doi: 10.1348/2044-8279.002008
  44. Torrance, M. & Galbraith, D. (2006). The rocessing demands of writing. In MacArthur, C., Graham, S. & Fitzgerald, J. (Eds.), Handbook of Writing Research (pp. 67-80). New York, United States: The Guilford Press.
  45. Veenman M. V. J. (2005). The assessment of metacogni-tive skills: what can be learned from multi-method designs? In B. Moschner & C. Artelt (Eds.), Lernstrategien und Metakognition: Implikationen fur Forschung und Praxis (pp. 75–97). Berlin, Germany: Waxmann.
  46. Veenman, M. V. J. (2011). Learning to self-monitor and self-regulate. In R. Mayer & P. Alexander (Eds.), Handbook of research on learning and instruction (pp. 197-218). New York, United States: Routledge.
  47. Verschaffel, L., Greer, B. & De Corte, E. (2000). Making sense of word problems. Lisse, Netherlands: Swets & Zeitlinger.
  48. Voyer, D. (2011). Performance in mathematical problem solving as a function of comprehencion and aritmetic skills. Journal of Science and Mathematics Education, 9(5), 1073-1092. doi:10.1007/s10763-010-9239-y
  49. Whimbey, A. & Lochhead, J. (1999). Problem-solving and comprehension. Hillsdale, NJ: Erlbaum.
  50. Williams, J. R. (2008). Revising the Declaration of Helsinki. World Medical Journal, 54, 120–125. Obtained from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681053/
  51. Zimmerman, B. J. (2000). Attaining self-regulation. A social cognitive perspective. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 13–39). San Diego, United States: Academic Press.
  52. Zimmerman, B. J. & Schunk, D. H. (2008). Motivation: An essential dimension of self-regulated learning. In D. H. Schunk & B. J. Zimmerman (Eds.), Motivation and self-regulated learning. Theory, research, and applications (pp. 1–30). New York, United States: Routledge.

Downloads

Não há dados estatísticos.

Artigos Similares

1 2 3 4 5 6 7 8 9 10 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.