Saltar para menu de navegação principal Saltar para conteúdo principal Saltar para rodapé do site

Artículos

Vol. 18 N.º 3 (2015): Noviembre

LA NEGOCIACIÓN DE SIGNIFICADO COMO PROCESO DE APRENDIZAJE: EL CASO DE UN PROGRAMA DE DESARROLLO PROFESIONAL EN LA ENSEÑANZA DE LA ESTADÍSTICA

DOI
https://doi.org/10.12802/relime.13.1834
Enviado
julho 1, 2023
Publicado
2015-11-30

Resumo

Neste artigo descreve-se, desde uma perspectiva teórica social, o processo de aprendizagem mediante o qual cinco professores de secundária em serviço dotaram de significado a elementos que caracterizam o pensamento estatístico. O estudo emerge de um contexto de desenvolvimento profissional, em particular de um projeto de desenvolvimento com ênfase na aprendizagem do conteúdo estatístico e do seu ensino. A metodologia empregada foi o “Estudo de Lições”, a qual consistiu no planejamento, implementação e análise do ensino de uma lição cujo objectivo foi promover elementos do pensamento estatístico. Concluímos que envolver aos professores na realização das atividades relacionadas com a sua prática docente, bem como na interpretação de documentos, meio aos quais se discutem ditas atividades, favorecem experiências de significado que dão lugar à sua aprendizagem.

Referências

  1. Adler, J., Ball, D., Krainer, K., Lin, F., & Novotna, J. (2005). Reflections on an emerging field: Researching mathematics teacher education. Educational Studies in Mathematics, 60(3), 359-381. doi: 10.1007/s10649-005-5072-6
  2. Ball, D. L., Thames, M. H., & Phelps, G. (2005, Abril). Articulating domains of mathematical knowledge for teaching. Paper presented at the Annual Meeting of the American Education Research Association, Montreal, Canada. Recuperado de www-personal.umich.edu/~dball/.
  3. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. What makes it special? Journal of Teacher Education, 59(5), 389-407. doi: 10.1177/0022487108324554
  4. Batanero, C., Arteaga, P., y Ruiz, B. (2010). Análisis de la complejidad semiótica de los gráficos producidos por futuros profesores de educación primaria en una tarea de comparación de dos variables estadísticas. Enseñanza de la Ciencias, 28(1), 141-154.
  5. Burgess, T. A. (2011). Teacher knowledge of and for statistical investigations. In C. Batanero, G. Burril, & C. Reading (Eds.), Teaching Statistics in School Mathematics-Challenges for Teaching and Teacher Education: A Joint ICMI/IASE Study (pp. 259-270). New York, United States of America: Springer.
  6. Curcio, F.R. (1987). Comprehension of mathematical relationships expressed in graphs. Journal for Research in Mathematics Education, 18(5), 382-393. doi: 10.2307/749086
  7. Figueras, O. y Rigo, M. (2005). Maestría en Educación, Especialidad Matemáticas. Plan y programas de estudio. D. F., México: Departamento de Matemática Educativa, Cinvestav.
  8. Flyvbjerg, B. (2011). Case Study. In N. K. Denzin & Y. S. Lincoln (Eds.), The SAGE Handbook of Qualitative Research (pp. 301–316). Thousand Oaks, CA: SAGE.
  9. Friel, S.N., Curcio, F. R., & Bright, G.W. (2001). Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education, 32(2), 124-158. doi: 10.2307/749671
  10. Garfield, J. B. & Ben-Zvi, D. (2008). Collaboration in Teaching and Research. In J. B. Garfield & D. Ben-Zvi (Eds.), Developing students’ statistical reasoning. Connecting research and teaching practice (pp. 325-341). New York, United States of America: Springer Netherlands. doi: 10.1007/978-1-4020-8383-9_16
  11. Gómez-Blancarte, A. L. (2011). Un Estudio sobre el Aprendizaje de Profesores de Secundaria en Servicio: El Caso de un Proyecto de Desarrollo Profesional en Estadística (Tesis doctoral no publicada). Departamento de Matemática Educativa, Centro de Investigación y de Estudios Avanzados del IPN, Distrito Federal, México.
  12. Hill, H. C., Schilling, S., & Ball, D. L. (2004). Developing measures of teachers’ mathematics knowledge for teaching. Elementary School Journal, 105(1), 11–30.
  13. Konold, C. & Miller, C. D. (2005). Tinker Plots. Dynamic Data Exploration. (Versión 1.0) [Computer software] Key Curriculum Press, University of Massachusetts. Leavy, A. & O’Loughlin, N. (2006). Preservice teachers understanding of the mean: Moving beyond the arithmetic average. Journal of Mathematics Teacher Education, 9(1), 53-90. doi: 10.1007/s10857-006-9003-y
  14. Lewis, C. (2000). Lesson Study: The core of Japanese professional development. Invited presentation to the Special Interest Group on Research in Mathematics Education at the annual meeting of the American Educational Research Association, New Orleans, L. A. Recovered http://www.lessonresearch.net/aera2000.pdf
  15. Lin, X., Genest, C., Banks, D. L., Molenberghs, G., Scott, D., & Wang, J-L. (2014). Past, Present, and Future of Statistical Science. London, United Kingdom: Chapman and Hall/CRC.
  16. Mokros, J. & Russell, S. J. (1995). Children’s concepts of average and representativeness. Journal for Research in Mathematics Education, 26(1), 20-39. doi: 10.2307/749226
  17. Pfannkuch, M. & Ben-Zvi, D. (2011). Developing teachers’ statistical thinking. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching Statistics in School Mathematics-Challenges for Teaching and Teacher Education: A Joint ICMI/IASE, The 18th ICMI Study (pp. 323-333). New York, United States of America: Springer.
  18. Pfannkuch, M. & Horring, J. (2005). Developing statistical thinking in a secondary school: a collaborative curriculum development. In G. Burrill & M. Camden (Eds.), Curricular development in statistics education: International Associations for Statistical Educations 2004 Roundtable (pp. 204-218). Voorbug, The Netherlands: International Statistical Institiute.
  19. Pfannkuch, M. & Wild, C. (2004). Towards and understanding of statistical thinking. En Dani Ben-Zvi & Joan Garfield (Eds.). The Challenge of Developing Statistical Literacy, Reasoning and Thinking (pp. 17-46). Dodrecht, The Netherlands: Kluwer Academic Publishers.
  20. Pfeffermann, D. & Rao, C. R. (Eds.) (2009). Sample Surveys: Design, Methods and Applications. Amsterdam, The Netherlands: Elsevier.
  21. Pollatsek, A., Lima, S., & Well, D. (1981). Concept or computation: students’ understanding of the mean. Educational Studies in Mathematics 12(2), 191-204. doi: 10.1007/BF00305621
  22. Ponte, J. P. (2011). Preparing teachers to meet the challenges of statistics education. In C. Batanero, G. Burril, & C. Reading (Eds.), Teaching Statistics in School Mathematics-Challenges for Teaching and Teacher Education: A Joint ICMI/IASE Study (pp. 299-309). New York, United States of America: Springer.
  23. Powell, A.B., Francisco, J.M., & Maher, C.A. (2003). An analytical model for studying the development of learners’ mathematical ideas and reasoning using videotape data. Journal of Mathematical Behavior, 22(4), 405-435. doi: 10.1016/j.jmathb.2003.09.002
  24. SEP - Secretaría de Educación Pública (2011). Programas de Estudio 2011. Guía para el Maestro. Educación Básica. Secundaria. Matemáticas. D.F., México: SEP.
  25. Sowder, J.T. (2007). The mathematical education and development of teachers. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (Vol. 1, pp. 157-223). Charlotte, NC: Information Age Publishing.
  26. Wenger, E. (2001). Comunidades de práctica: aprendizaje, significado e identidad. Barcelona, España: Editorial Paidós.
  27. Wild, C. & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223-248.
  28. doi: 10.1111/j.1751-5823.1999.tb00442.x

Downloads

Não há dados estatísticos.

Artigos Similares

1 2 3 4 5 6 7 8 9 10 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.