Artículos
Vol. 12 N.º 2 (2009): Julio
CEREBRO, COGNICIÓN Y MATEMÁTICAS
Université Laurentienne, Ontario, Canadá
Université Laurentienne, Ontario, Canadá
-
Enviado
-
maio 16, 2024
-
Publicado
-
2009-05-29
Resumo
Neste artigo, abordamos o problema da relação entre cérebro, cognição e matemática. Na primeira parte, apresentaremos certos elementos em relação à anatomia e o crescimento do cérebro. À partir destes elementos e de resultados recentes da pesquisa em neurociências, na segunda parte, nós apresentaremos um esboço das regiões cerebrais geralmente associadas ao pensamento aritmético. Em particular, apresentamos um problema interessante do ponto de vista didático, qual seja, as regiões corticais ativadas quando da passagem do pensamento aritmético perceptual (presente em várias espécies) ao pensamento aritmético simbólico calculatório (específico dos seres humanos). Em seguida, fazemos um resumo das pesquisas efetuadas em neurociências relativas à Algebra. A revisão da literatura oferece um panorama geral que destaca a natureza multimodal da cognição em geral e da congnição matemática em particular. Esta natureza multimodal da cognição é compatível com vários níveis do desenvolvimento ontogénico do cérebro, desenvolvimento que resulta ser fortemente ligado ao contexto cultural. Nas conclusões, sugerimos certos problemas e questões que poderiam servir de ponto de partida de um programa de pesquisa para educadores e neurocientistas.
Referências
- Anderson, J. R., Qin, Y., Sohn, M., Stenger, V. A. & Carter, C. S. (2003). An information-processing model for the BOLD response in symbol manipulation tasks. Psychonomic Bulletin & Review 10 (2), 241-261.
- Anderson, J. R., Reder, L. & Lebiere, C. (1996). Working memory: activation limitations on retrieval. Cognitive Psychology 30, 221-256.
- Ansari, D., Fugelsang, J. A., Dhital, B. & Venkatraman, V. (2006). Dissociating response conflict from numerical magnitude processing in the brain: an event-related fMRI study. Neurolmage 32,799-805.
- Arzarello, F., Bosch, M., Gascón, J. & Sabena, C. (2008). The ostensive dimension through the lenses of two didactic approaches. ZDM. The International Journal on Mathematics Education 40, 179-188
- Blessing, S. & Anderson, J. R. (1996). How people learn to skip steps. Journal of Experimental Psychology: Learning, Memory, and Cognition 22 (3), 576-598.
- Brizuela, B. & Schliemann, A. (2004). Ten-year-old students solving linear equations. For the Learning of Mathematics 24 (2), 33-40.
- Butterworth, B. (1999). The mathematical brain. London: Macmillan Publishers.
- Campbell, S. (2007). The Engrammetron: establishing an educational neuroscience laboratory. SFU. Educational Review 1, 17-29.
- Cantlon, J. F., Brannon, E. M., Carter, E. J. & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLOS Biology 4 (5), 844-854.
- Caviness, V. S. J., Kennedy, D. N., Bates, J. F. & Makris, N. (1997). The developing human brain: a morphometric profile. In R. W. Thatcher, G. R. Lyon, J. Rumsey & N. Krasnegor (Eds.), Developmental neuroimaging: mapping the development of brain and behavior (pp. 3-14). Toronto, Canada: Academic Press.
- Chochon, F., Cohen, L., Van de Moortele, P. F. & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience 11 (6), 617-630.
- Dehaene, S. (1997). The number sense. Oxford, UK: Oxford University Press.
- Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., Benke, T. (2003). Leaming complex arithmetic-an fMRI study. Cognitive Brain Research 18, 76-88
- Devlin, K. (2005). The math instinct. Why you're a mathematical genius (along with lobsters, binds, cats, and dogs). New York, USA: Thunder's Mouth Press
- Edwards, L., Radford, L. & Arzarello, F. (2009), Gestures and multimodality in the teaching and learning of mathematics (Special Issue). Educational Studies in Mathematics 70 (2), 91-215.
- Finger, S. (2004). Paul Broca: 1824-1880. Journal of Neurology 251, 769-770
- Gallese, V. & Lakoff, G. (2005). The brain's concepts: the role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology 22 (3/4), 455-479.
- Gallistel, C. R. & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition 44, 43-74.
- Gehlen, A. (1988). Man. His nature and place in the world. New York, USA: Columbia University Press:
- Gogtay, N., Giedd, J., Lusk, L., Hayashi, K., Greenstein, D., Vaituzis, A., Nugent, T., Herman, D. Clasen, L., Toga, A., Rapoport, J. & Thompson, P. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America 101(21), 8174-8179.
- Gómez, J. C. (2004). Apes, monkeys, children, and the growth of mind. Cambridge, USA: Harvard University Press.
- Goswami, U. (2004). Neuroscience and education. British Journal of Educational Psychology 74, 1-14.
- Grafman, J., Kampen, D., Rosenberg, J., Salazar, A. & Boller, F. (1989). Calculation abilities in a patient with a virtual left hemispherectomy. Behavioural Neurology 2, 183-194.
- Healy, J. M. (1991). Endangered minds: why children don't think and what we can do about it. New York, USA: Touchstone.
- Houdé, O. (2004). La psychologie de l'enfant. Paris, France: PUF.
- Høyrup, J. (2002). Lengths, widths, surfaces. A portrait of old babylonian algebra and its kin. New York, USA: Springer.
- Itard, J. M. G. (1962). The wild boy of Aveyron. New York, USA: Meredith Publishing Company. Köhler, W. (1951). The mentality of apes. New York-London: The Humanities Press-Routledge & Kegan Paul.
- Kosslyn, S. & Koening, O. (1992). Wet mind: The new cognitive neuroscience. New York, USA: The Free Press.
- Lakoff, G. & Núñez, R. (2000). Where mathematics comes from. New York, USA: Basic Books. Lefèvre, W. (1981). Rechensteine und Sprache. Stuttgart, Germany: Klett-Cotta.
- Luna, B. (2004), Algebra and the adolescent brain. Trends in Cognitive Sciences 8 (10), 437-439.
- Luria, A. (1966). Higher cortical functions in man. New York, USA: Basic Books.
- Luria, A. (1973). The working brain. New York, USA: Basic Books.
- Newton, M. (2002). Savage girls and wild boys. A history of feral children. London, UK: Faber and Faber.
- Prochiantz, A. (1989). La construction du cerveau. Paris, France: Hachette.
- Qin, Y., Carter, C. S., Silk, E. M., Stenger, V. A., Fissell, K., Goode, A. & Anderson, J.R. (2004). The change of the brain activation patterns as children learn algebra equation solving. Proceedings of the National Academy of Sciences of the United States of America, 101(15), 5686-5691.
- Qin, Y., Sohn, M., Anderson, J. R., Stenger, V. A., Fissell, K., Goode, A. & Carter, C.S. (2003). Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4951-4956.
- Radford, L. (2008). Iconicity and contraction: a semiotic investigation of forms of algebraic generalizations of patterns in different contexts. ZDM. The International Journal on Mathematics Education 40 (1), 83-96.
- Radford, L. (2009a). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics 70 (2), 111-126.
- Radford, L. (2009b). Signs, gestures, meanings: elementary algebraic thinking from a cultural semiotic perspective. Sixth Conference of European Research in Mathematics Education. Lyon, France, Jan. 28th-Feb. 1, 2009. Plenary lecture.
- Radford, L., Bardini, C. & Sabena, C. (2007). Perceiving the general: the multisemiotic dimension of student's algebraic activity. Journal for Research in Mathematics Education 38, 507-530.
- Radford, L. Demers & S. Miranda, 1. (2009) Processus d'abstraction en mathématiques. Ottawa, Canada: Centre franco-ontarien de ressources pédagogiques, Imprimeur de la Reine pour l'Ontario.
- Saper, C. B., Iversen, S. & Frackowiak, R. (2000). Integration of sensory and motor function: the association areas of the cerebral cortex and the cognitive capabilities of the brain. In E. R. Kandel, J. H. Schwartz & T. M. Jessell (Eds.), Principles of neural science (pp. 349-380). Toronto, Canada: McGraw-Hill.
- Savage-Rumbaugh, S. & Lewin, R. (1994). Kanzi. New York, USA: John Wiley.
- Schwartzman, S. (1994). The words of mathematics. An etymological dictionary of mathematical terms used in English. Washington, USA: The Mathematical Association of America.
- Sowell, E. & Jernigan, T. (1998). Further MRI evidence of late brain maturation: limbic volume increases and changing asymmetries during childhood and adolescence. Developmental Neuropsychology 14 (4), 599-617.
- Sowell, E., Thompson, P., Holmes, C., Jernigan, T. & Toga, A. (1999). In vivo evidence for post- adolescent brain maturation in frontal and striatal regions. Nature Neuroscience 2 (10), 859-861.
- Starkey, P., Spelke, E. & Gelman, R. (1990). Numerical abstraction by human infants. Cognition 36, 97-127.
- Ta'ir, J., Brezner, A. & Ariel, R. (1997). Profond developmental dyscalculia: evidence for a cardinal/ ordinal skills acquisition device. Brain and Cognition 35, 184-206.
- Tomasello, M. & Call, J. (1997). Primate cognition. New York, USA: Oxford University Press.
- Tweed, D. B., Haslwanter, T. P. & Happe, V. (1999). Non-commutativity in the brain. Nature 399, 261-263.
- Vita, V. (1982). Il punto nella terminologia matematica greca. Archive for the History of Exact Sciences 27, 101-114.
- Wexler, B. E. (2006). Brain and culture. Neurobiology, ideology, and social change. Massachusetts, USA: MIT Press.
- Willingham, D., T. & Lloyd, J. W. (2007). How educational theories can use neuroscience data. Mind, Brain and Education 1 (3), 140-149.
- Wynn, K. (1992). Addition and subtraction by human infants. Nature 358, 749-750.
- Weinberger, N. M. (2004). Music and the brain. Scientific American 291 (5), 88-95
Downloads
Não há dados estatísticos.