Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 15 No. 1 (2012): Marzo

COGNITIONS AND TYPES OF COMMUNICATION OF MATHEMATICS TEACHERS. ILLUSTRATION OF AN ANALYTICAL MODEL IN A DIVIDED EPISODE

Submitted
July 14, 2023
Published
2012-03-01

Abstract

In this article we focus our attention on the classroom and, more specifically, on the actions of the teacher during the teaching process, since we consider that said actions are conditioned or strengthened by their cognitions (beliefs, mathematical knowledge for teaching and objectives). For this reason, we explain and discuss an analytic model in relation to the practice of the teacher, which focuses on their actions, cognitions and type of mathematical communication that promotes (as an exteriorization of cognitions), as well as in their relations. In order to illustrate the modeling process, we use a situation (episode) in which a teacher presents the concept (concept of millesimal) during two different moments. First of all, we tackle what we understand in relation to each of the components of the model and, secondly, we present the modeling process and the relationships between components. Finally, we discuss some of the implications of this type of analysis in the training of teachers.

References

  1. Aguirre, J., & Speer, N. (1999). Examining the relationship between beliefs and goals in teacher practice. Journal of Mathematical Behavior 18(3), 327-356.
  2. Ainley, J. (1988). Perceptions of teachers’ questioning styles. In A. Borbás (Ed.), Proceedings of the 12th Annual Meeting of the International group for the Psychology of Mathematics Education (pp. 92-99). Veszprém, Hungria: PME.
  3. Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: what makes it special? Journal of Teacher Education 59(5), 389-407. doi: 10.1177/0022487108324554
  4. Brendefur, J., & Frykholm, J. (2000). Promoting mathematical communication in the classroom: two preservice teachers’ conceptions and practices. Journal of Mathematics Teacher Education 3(2), 125-153. doi: 10.1023/A:1009947032694
  5. Calderhead, J. (1996). Teachers: Beliefs and Knowledge. In D. Berliner & R. Calfee (Eds.), Hand- book of Educational Psychology (pp. 709-725). Nova York: Macmillan.
  6. Carrillo, J., Climent, N., Gorgorió, N., Prat, M. y Rojas, F.(2008). Análisis de secuencias de aprendizaje matemático desde la perspectiva de la gestión de la participación. Enseñanza de las Ciencias 26(1), 67-76.
  7. Climent, N. (2005). El desarrollo profesional del maestro de Primaria respecto de la enseñanza de la matemática. Un estudio de caso. Tesis de doctorado. Recuperada de Michigan, Proquest Michigan University (www.proquest.co.uk).
  8. Charalambous, C. Y. (2008). Mathematical knowledge for teaching and the unfolding of tasks in mathematics lessons: Integrating two lines of research. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano & A. Sepulveda (Eds.), Proceedings of the 32 nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 281-288). Morelia, México: PME.Davis, B., & Renert, M. (2009). Mathematics-for-teaching as shared dynamic participa- tion. For the learning of mathematics 29(3), 37-43.
  9. Ferin, I. (2002). Comunicação e culturas do quotidiano. Lisboa, Portugal: Quimera. Garcia, L., Azcárate, C. y Moreno, M. (2006). Creencias, concepciones y conocimiento profesional de profesores que enseñan cálculo diferencial a estudiantes de ciencias económicas. Revista Latinoamericana de Investigación en Matemática Educativa 9(1), 85-116.
  10. Grootenboer, P. (2008). Mathematical belief change in prospective primary teachers. Journal of Mathematics Teacher Education 11 (6), 479-497. doi: 10.1007/s10857-008-9084-x
  11. Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematics knowledge for teaching on student achievement. American Education Research Journal 42(2), 371-406. doi: 10.3102/00028312042002371
  12. Monteiro, R., Carrillo, J., & Aguaded, S. (2008). Emergent theorizations in Modelling the Teaching of Two Science Teachers. Research in Science Education 38(3), 301-319. doi: 10.1007/s11165-007-9051-z
  13. Pajares, F. (1992). Teacher’s beliefs and educational research: cleaning up a messy construct. Review of Educational Research 62 (3), 307-332.
  14. Potari, D. & Jaworski, B. (2002). Tackling complexity in mathematics teaching development: using the teaching triad as a tool for reflection and analysis. Journal for Research in Mathematics Education 5(4), 351-380. doi: 10.1023/A:1021214604230
  15. Reséndiz, E. (2006). La Variación y las explicaciones didácticas de los profesores en situación escolar. Revista Latinoamericana de Investigación en Matemática Educativa 9(3), 435-458.
  16. Ribeiro, C. (2010). A prática de uma professora e seus objectivos: percursos e (in)alterações. In H. Gomes, L. Menezes & I. Cabrita (Org.), Actas do XXI Seminário de Investigação em Educação Matemática 2010 (pp. 60-71). Lisboa, Portugal: APM
  17. Ribeiro, C. & Carrillo, J. (2011). Knowing mathematics as a teacher. In M. Pytlak, T. Rowland & E. Swoboda (Eds.), Proceedings of the Seventh Congress of European Society for Research in Mathematics Education, CERME 7 (pp. 2818-2826). Rzeszów: ERME. (ISBN: 978-83-7338- 683-9)
  18. Ribeiro, C., Carrillo, J. e Monteiro, R. (2008). Uma perspectiva cognitiva para a análise de uma aula de matemática do 1.º ciclo: um exemplo de apresentação de conteúdo tendo como recurso o desenho no quadro. En R. Luengo, B. Gómez, M. Camacho e L. J. Blanco (Eds.), Investigación en Educación Matemática XII (pp. 545-556). Badajoz, Espanha: Sociedad Española de Investigación en Educación Matemática, SEIEM.
  19. Ribeiro, C., Carrillo, J. y Monteiro, R. (2009). ¿De qué nos informan los objetivos del profesor sobre su práctica? Análisis y influencia en la práctica de una maestra. En M. J. González, M. T. González Astudillo y J. Murrillo (Eds.), Investigación en Educación Matemática XIII (pp. 415-424). Santander, España: Sociedad Española de Investigación en Educación Matemática, SEIEM.
  20. Ribeiro, C., Monteiro, R., & Carrillo, J. (2009). Professional knowledge in an improvisation episode: the importance of a cognitive model. In Durand-Guerrier, V., Soury-Lavergne, S. & Arzarello, F. (Eds), Proceedings of CERME6 (2030-2039). Lyon, France: ERME. Recuperado en Dicember de 2010 de http://www.inrp.fr/editions/editions-electroniques/cerme6/working-group-10
  21. Saxe, G. (1991). Culture and cognitive development: Studies in mathematical understanding. Hillsdale, USA: Lawrence Erlbaum Associates.
  22. Schoenfeld, A. (1998a). On modeling teaching. Issues in Education 4(1), 149-162.
  23. Schoenfeld, A. (1998b). Toward a theory of teaching-in-context. Issues in Education, 4(1), 1-94.
  24. Schoenfeld, A. (1999). Models of the teaching process. Journal of Mathematical Behavior 18(3), 243-261.
  25. Schoenfeld, A., Ministrell, J., & Zee, E. v. (1999). The detailed analysis of an established teacher’s non-traditional lesson. Journal of Mathematical Behavior 18(3), 281-325. doi: 10.1016/S0732-3123(99)00035-8
  26. Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher 15 (2), 4-14.
  27. Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics teaching 77, 20-26.
  28. Stake, R. (2000). Qualitative case studies. In N. K. Denzin e Y. Lincoln (Ed.). Handbook of qualitative research. Qualitative case studies (435-454). Thousand Oaks: Sage. Star, J. & Strickland, S. K. (2008). Learning to observe: using video to improve preservice mathematics teachers’ ability to notice. Journal of Mathematics Teacher Education 11(2), 107-125.
  29. Strauss, A. & Corbin, J. (1997). Grounded theory in practice. Thousand Oaks, CA: Sage Publications.
  30. Stigler, J. & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York, NY: The Free Press.
  31. Tomás Ferreira, R. A. (2005). Portuguese student teacher’s evolving teaching modes: A modified teacher development experience. Unpublished Doctoral Dissertation, Illinois State University, IL, USA
  32. Turner, F. (2009). Developing the Ability to Respond to the Unexpected. In M. Joubert (Ed.), Proceedings of the British Society for Research into Learning Mathematics (Vol. 29(1), pp. 91-96). Cambridge (UK): British Society for Research into Learning Mathematics.

Downloads

Download data is not yet available.

Similar Articles

<< < 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)