Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 13 No. 1 (2010): Marzo

CONSTRUCTING A GENETIC DECOMPOSITION:THEORETHICAL ANALYSIS OF THE LINEAR TRANSFORMATION CONCEPT

Submitted
April 24, 2024
Published
2010-03-31

Abstract

The aim of this paper is to present the process that we followed in order to prepare a genetic decomposition of the concept of linear transformation, showing the steps we took in its construction and the difficulties that we encountered. The design is based on a theoretical analysis determined by the research cycle related to APOS theory. We propose two genetic decompositions that describe two possible ways to construct this concept, one that uses the mechanism of interiorization and another that uses coordination.

References

  1. Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D. & Thomas, K. (1996). A Framework for Research and Curriculum Development in Undergraduate Mathematics Education. In J. Kaput, A. H. Schoenfeld & E. Dubinsky (Eds.), Research in Collegiate Mathematics Education II (pp.1-32). U.S.A.. American Mathematical Society.
  2. Ayers, T., Davis, G., Dubinsky, E. & Lewin, P. (1988). Computer Experiences in Learning Composition of Functions. Journal for Research in Mathematics Education 19 (3), 246-259.
  3. Breidenbach, D., Dubinsky, E., Hawks, J. & Nichols, D. (1992). Development of the Process Conception of Function. Educational Studies in Mathematics 23 (3), 247-285.
  4. Brown, A., DeVries, D., Dubinsky, E. & Thomas, K. (1997). Learning Binary Operations, Groups and Subgroups. Journal of Mathematical Behavior 16 (3), 187-239.
  5. Dorier, J.-L. (2002). Teaching Linear Algebra at University. In Tatsien Li (Ed.), Proceedings of the International Congress of Mathematicians, ICM (Vol. III, pp. 875-884), Beijing, China: Higher Education Press.
  6. Dubinsky, E., Weller, K., McDonald, M. & Brown, A. (2005). Some Historical Issues and Paradoxes Regarding the Concept of Infinity. An APOS Analysis (Part I). Educational Studies in Mathematics 58 (3), 335-359.
  7. Dubinsky, E. & McDonald, M. A. (2001). APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research. In D. Holton (Ed.), The Teaching and Learning of Mathematics at University Level: An ICMI Study (pp. 273-280). Dordrecht, Netherlands: Kluwer Academic Publishers.
  8. Dubinsky, E. (1994). A Theory and Practice of Learning College Mathematics. In A. Schoenfeld (Ed.), Mathematical Thinking and Problem Solving (pp. 22-247). Hillsdale, NJ: Erslbaum.
  9. Dubinsky, E. (1991). Reflective Abstraction in Advanced Mathematical Thinking. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 95-123). Dordrecht: Kluwer.
  10. Hoffman, K. y Kunze, R. (1973). Algebra lineal. Bogotá: Prentice-Hall International.
  11. Kú, D., Trigueros, A. y Oktaç, A. (2008). Comprensión del concepto de base de un espacio victorial desde el punto de vista de la teoria APOE. Educación Matemática 20 (2), 65-89.
  12. McDonald, M. (2000), http://galois.oxy.edu/mickey/APOSbib.html
  13. Meel, D. (2003). Modelos y teorías de la comprensión matemática: comparación de los modelos de Pirie y Kieren sobre el crecimiento de la comprensión matemática y la teoria APOE. Revista Latinoamericana de Investigación en Matemática Educativa 6 (3), 221-271.
  14. Oktaç, A., Trigueros, M. & Vargas, X. N. (2006). Understanding of Vector Spaces. A Viewpoint from APOS Theory. CD-ROM Proceedings of the 3rd International Conference on the Teaching of Mathematics. Istambul, Turkey: Turkish Mathematical Society.
  15. Parraguez, M. & Oktaç, A. (2010). Construction of the Vector Space Concept from the Viewpoint of APOS Theory. Linear Algebra and its Applications, 432, 2112-2124.
  16. Piaget, J. (1970). Genetic epistemology. New York & London: Columbia University Press.
  17. Piaget, J. y Garcia, R. (2004). Psicogenesis e historia de la ciencia. México: Siglo XXI Editores.
  18. Roa, D. (2008). Construcciones y mecanismos mentales asociados al concepto transformación lineal. Tesis de maestria, Cinvestav, México.
  19. Trigueros, M., Oktaç, A. & Manzanero, L. (2007). Understanding of Systems of Equations in Linear Algebra. Demetra Pitta - Pantazi & George Philippou (Eds.), Proceedings of the 5th Congress of the European Society for Research in Mathematics Education, CERME (pp. 2359-2368).
  20. Larnaca, Cyprus: University of Cyprus.
  21. Trigueros, M. & Oktaç, A. (2005). La Théorie APOS et l'Enseignement de l'Algèbre Linéaire. Annales de Didactique et de Sciences Cognitives 10, 157-176.
  22. Trigueros, M. (2005). La noción del esquema en la investigación en matemática educativa a nivel superior. Educación Matemática 17 (1), 5-31.
  23. Weller, K., Montgomery, A., Clark, J., Cottrill, J., Trigueros, M., Arnon, I. & Dubinsky, E. (2002). Learning Linear Algebra with ISETL. Obtenido de http://homepages.ohiodominican.edu/~cottrilj/datastore/linear-alg/LLAWI-P3.pdf.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.