Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 10 No. 2 (2007): Julio

CONCEPTS OF LINEAR TRANSFORMATION IN A GEOMETRIC CONTEXT

Submitted
September 8, 2024
Published
2007-07-31

Abstract

Referring to the theory of intuitions and intuitive models of Fischbein (1987), we focus our attention in identifying those intuitive models that some students might have with respect to linear transformations in a geometrical context. In order to achieve our goal we designed an interview; after applying and analyzing it we found that all the students that we interviewed were thinking about the linear transformation in terms of prototypical examples or models. Students seemed to have a universe of linear transformations that consisted in expansions, contractions, reflections, rotations and combinations of these. The nuances of these models were changing depending on the student and the properties that they were assigning to their representations.

References

  1. Bagni, G. (2000). "Simple" rules and general rules in some high school students mistakes, Journal fur Mathematik Didaktik 21 (2), 124-138.
  2. Fischbein, E. (1987 ). Intuition in science and mathematics: an educational approach Holland: Reidel.
  3. Fischbein, E. (1989). Tacit models and mathematical reasoning For Learning of Mathematics 9, 9- 14.
  4. Gentner, D. (1983). Structure-mapping: a thoretical framework for analogy. Cognitive Science 7, 155-170.
  5. Grossman, S. (1996). Álgebra lineal. México: McGraw-Hill.
  6. Hitt, F. (2002). Algebra lineal. México: Pearson Educación.
  7. Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics 12, 317-326.
  8. Linchevski, L. & Vinner, S. (1988). The naive concept of sets in elementary teachers. En A. Borbas (Ed.), Proceedings of the Twelfth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 471-478). Veszprem, Hungria: PME
  9. Matz (1982). Towards a process model for high school algebra errors. En D. Sleeman & J.S. Brown (Eds.), Intelligent Tutoring Systems (pp. 25-50). London: Academic Press, Inc.
  10. Molina, J. G. (2004). Las concepciones que los estudiantes tienen sobre la transformación lineal en contexto geométrico. Tesis de maestría, Cinvestav, México.
  11. Papert, S. (1981). Desafio a la mente. Buenos Aires, Argentina: Ediciones Galápago.
  12. Pinker, S. (1997). How the mind works. New York: USA: Norton & Company Inc.
  13. Sierpinska, A. (1996). Problems related to the design of the teaching and learning process in linear algebra Artículo presentado en la Research Conference in Collegiate Mathematics Education. USA Central Michigan University
  14. Sierpinska, A. (2000). On some aspects of student's thinking in linear algebra. In J. L. Dorier (Ed.), On the Teaching of Linear Algebra (pp. 209-246) Holland: Kluwer.
  15. Este trabajo forma parte del proyecto de investigación Conacyt 2002-C01-41726S

Downloads

Download data is not yet available.

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.