Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 9 No. 3 (2006): Noviembre

LA RIGIDEZ GEOMETRICA Y LA PREFERENCIA DE PROPIEDADES GEOMETRICAS EN UN AMBIENTE DE GEOMETRIA DINAMICA EN EL NIVEL MEDIO

Submitted
September 12, 2024
Published
2024-10-16

Abstract

The Dynamic Geometry offers the possibility of an approximation to the study of Geometry that permits the dynamic manipulation of the geometric objects, opening thus possibilities that before were not available for the students of the medium level. Nevertheless, some cognitive phenomena continue presents, like the geometric inflexibility and the fact to prefer some visually evident geometric properties over other, and in fact, they are influenced by the perception that the geometric objects they have due mainly to the dynamic characteristic of the software and to the dragging operation. For that reason the research was carried out to deepen on this issue and, considering the Theory Figural Concepts, to study the presence and sign of phenomena as these in a Dynamic Geometry environment.

References

  1. Acuña S., C. M. (s.f.). Algo sobre puntos medios. México: Programa Nacional de Formación y Actualización de Profesores de Matemáticas y Cinvestav.
  2. Arzarello, F.; Olivero, F.; Paola, D. y Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt für Didaktik der Mathematik 34 (3), 6672.
  3. Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics 24, 139-162.
  4. Goldenberg, E. P. y Cuoco, A. A. (1998). What is dynamic geometry? En R. Lehrer y D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 351-367). Mahwah, N.J.: Lawrence Erlbaum Associates, Inc.. Publishers.
  5. Hölzl, R. (1995). Between drawing and figure. En R. Sutherland y J. Mason (Eds.). Exploiting mental imagery with computers in mathematics education (pp. 117-124). Berlin, Alemania: Springer-Verlag.
  6. Hoyles, C., y Jones, K. (1998). Proof in dynamic geometry contexts. En C. Mammana y V. Villani (Eds.), Perspectives on the teaching of geometry for the 21" century (pp. 121- 128). Dordrecht: Kluwer Academic Publishers.
  7. Laborde, C. y Capponi, B. (1994). Cabri-Géomètre constituant d'un milieu pour l'apprentissage de la notion de figure géométrique. Recherches en Didactique des Mathématiques 14 (1-2), 165210.
  8. Larios O., V. (2003), Geometrical rigidity: an obstacle in using dynamic geometry software in a geometry course. En M. A. Mariotti (Ed.), Proceedings of the Third Conference of the European Society for Research on Mathematics Education, Bellaria, Italia: Edizione Plus, Pisa University Press.
  9. Larios O., V. (2005a). ). La construcción de la prueba geométrica en un ambiente de geometría dinámica en secundaria. En J. Lezama, M. Sánchez y J.G. Molina, J.G (Eds.), Acta Latinoamericana de Matemática Educativa (Vol. 18, pp. 765-770). México: Clame
  10. Larios O., V. (2005b). Fenómenos cognitivos presentes en la construcción de argumentos en un ambiente de Geometría Dinámica. Tesis de doctorado, Cinvestav, México.
  11. Maracci, M. (2001). Drawing in the problem solving process. En J. Novotná (Ed.), Proceedings of 2nd Conference of the European Society for Research in Mathematics Education (pp. 478-488). Praga, República Checa: Charles University.
  12. Mariotti, M. A. (1995). Images and concepts in geometrical reasoning. En R. Sutherland y J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 97-116). Berlín, Alemania: SpringerVerlag.
  13. Mariotti, M.A. (2000). Introduction to proof: the mediation of a dynamic software environment. Educational Studies in Mathematics 44, 2553.
  14. Noss, R. y Hoyles, C. (1996). Windows on mathematical meanings. Dordrecht, Holanda: Kluwer Academic Publishers.
  15. Olivero, F. (2003). The proving process within a dynamic geometry environment. Tesis de doctorado, University of Bristol, Graduate School of Education, England.
  16. Parzysz, B. (1988). «Knowing» vs «seeing». Problems of the plane representation of space geometry figures. Educational Studies in Mathematics 19, 79-92.
  17. Sánchez S., E. (2003). La demostración en geometría y los procesos de reconfiguración. Educación Matemática 15 (2), 27-54.
  18. Simon, M. A. (1996). Beyond inductive and deductive reasoning: The search for a sense of knowing. Educational Studies in Mathematics 30, 197-210.
  19. Straesser, R. (2001). Cabri-Géométre: does dynamic geometry software change geometry and its teaching and learning? International Journal of Computer for Mathematical Learning 6 (3), 319-333.
  20. Vygotski, L. S. (1979). El desarrollo de los procesos psicológicos superiores. Barcelona, España: Crítica.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.