Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículos

Vol. 9 No 3 (2006): Noviembre

LA RIGIDEZ GEOMETRICA Y LA PREFERENCIA DE PROPIEDADES GEOMETRICAS EN UN AMBIENTE DE GEOMETRIA DINAMICA EN EL NIVEL MEDIO

Soumis
septembre 12, 2024
Publiée
2006-11-30

Résumé

La Géométrie Dynamique propose la possibilité d’une approximation a l’étude de la Géométrie qui permet la manipulation dynamique des objets géométriques, permettant ainsi l’ouverture à des possibilités qui avant n’étaient pas disponibles pour les étudiants de niveau moyen. Toutefois, certains phénomènes cognitifs sont encore présents, tels la rigidité géométrique et le fait de préférer certaines propriétés géométriques visuellement évidentes par-dessus d’autres, et sont en fait influencés par la perception que des objets géométriques on a principalement du à la caractéristique dynamique du software et à l’opération du déplacement. C’est pour cela qu’une recherche a été réalisée dans le niveau moyen pour approfondir à ce sujet et, en considérant la Théorie des Concepts Figuraux, étudier la présence et la manifestation des phénomènes comme celui-ci dans une ambiance de Géométrie Dynamique.

Références

  1. Acuña S., C. M. (s.f.). Algo sobre puntos medios. México: Programa Nacional de Formación y Actualización de Profesores de Matemáticas y Cinvestav.
  2. Arzarello, F.; Olivero, F.; Paola, D. y Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt für Didaktik der Mathematik 34 (3), 6672.
  3. Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics 24, 139-162.
  4. Goldenberg, E. P. y Cuoco, A. A. (1998). What is dynamic geometry? En R. Lehrer y D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 351-367). Mahwah, N.J.: Lawrence Erlbaum Associates, Inc.. Publishers.
  5. Hölzl, R. (1995). Between drawing and figure. En R. Sutherland y J. Mason (Eds.). Exploiting mental imagery with computers in mathematics education (pp. 117-124). Berlin, Alemania: Springer-Verlag.
  6. Hoyles, C., y Jones, K. (1998). Proof in dynamic geometry contexts. En C. Mammana y V. Villani (Eds.), Perspectives on the teaching of geometry for the 21" century (pp. 121- 128). Dordrecht: Kluwer Academic Publishers.
  7. Laborde, C. y Capponi, B. (1994). Cabri-Géomètre constituant d'un milieu pour l'apprentissage de la notion de figure géométrique. Recherches en Didactique des Mathématiques 14 (1-2), 165210.
  8. Larios O., V. (2003), Geometrical rigidity: an obstacle in using dynamic geometry software in a geometry course. En M. A. Mariotti (Ed.), Proceedings of the Third Conference of the European Society for Research on Mathematics Education, Bellaria, Italia: Edizione Plus, Pisa University Press.
  9. Larios O., V. (2005a). ). La construcción de la prueba geométrica en un ambiente de geometría dinámica en secundaria. En J. Lezama, M. Sánchez y J.G. Molina, J.G (Eds.), Acta Latinoamericana de Matemática Educativa (Vol. 18, pp. 765-770). México: Clame
  10. Larios O., V. (2005b). Fenómenos cognitivos presentes en la construcción de argumentos en un ambiente de Geometría Dinámica. Tesis de doctorado, Cinvestav, México.
  11. Maracci, M. (2001). Drawing in the problem solving process. En J. Novotná (Ed.), Proceedings of 2nd Conference of the European Society for Research in Mathematics Education (pp. 478-488). Praga, República Checa: Charles University.
  12. Mariotti, M. A. (1995). Images and concepts in geometrical reasoning. En R. Sutherland y J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 97-116). Berlín, Alemania: SpringerVerlag.
  13. Mariotti, M.A. (2000). Introduction to proof: the mediation of a dynamic software environment. Educational Studies in Mathematics 44, 2553.
  14. Noss, R. y Hoyles, C. (1996). Windows on mathematical meanings. Dordrecht, Holanda: Kluwer Academic Publishers.
  15. Olivero, F. (2003). The proving process within a dynamic geometry environment. Tesis de doctorado, University of Bristol, Graduate School of Education, England.
  16. Parzysz, B. (1988). «Knowing» vs «seeing». Problems of the plane representation of space geometry figures. Educational Studies in Mathematics 19, 79-92.
  17. Sánchez S., E. (2003). La demostración en geometría y los procesos de reconfiguración. Educación Matemática 15 (2), 27-54.
  18. Simon, M. A. (1996). Beyond inductive and deductive reasoning: The search for a sense of knowing. Educational Studies in Mathematics 30, 197-210.
  19. Straesser, R. (2001). Cabri-Géométre: does dynamic geometry software change geometry and its teaching and learning? International Journal of Computer for Mathematical Learning 6 (3), 319-333.
  20. Vygotski, L. S. (1979). El desarrollo de los procesos psicológicos superiores. Barcelona, España: Crítica.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.