Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 23 No. 3 (2020): November

EFFECT OF SCRATCH IN THE LEARNING OF GEOMETRIC CONCEPTS OF FUTURE PRIMARY SCHOOL TEACHERS

DOI
https://doi.org/10.12802/relime.20.2334
Submitted
November 7, 2022
Published
2020-11-15

Abstract

The objective is to evaluate the effect of the Geometry of the Turtle of the programming language Scratch 2 in the learning of geometric concepts of future Primary teachers. A quasi-experimental study has been carried out in the Faculty of Education of the Complutense University of Madrid. Descriptive, differential and correlational analyzes have been carried out on academic performance and student satisfaction with a Scratch 2 methodology and, in addition, cluster analysis to identify student typologies. The results show that the students who have followed this methodology have significantly higher levels in geometry. Three types of students have been identified, being related to their mathematical performance and their attitude towards the methodology. Thus, this methodology favors the development of geometric skills in future Primary teachers.

References

  1. Abelson, H., y diSessa, A. A. (1981). Turtle Geometry: The computer as a Medium for Exploring
  2. Mathematics. Cambridge: The MIT Press. https://bit.ly/2FcO2QQ
  3. Alsina, Á., Novo, M. L., y Moreno, A. (2016). Redescubriendo el entorno con ojos matemáticos:Aprendizaje realista de la geometría en Educación Infantil. Edma 0-6: Educación Matemática en la Infancia, 5(1), 1-20. http://www.edma0-6.es/index.php/edma0-6/article/view/9
  4. Álvarez, M. (2017). Desarrollo del pensamiento computacional en Educación Primaria: una experiencia educativa con Scratch. Universitas Tarraconensis. Revista de Ciències del’Educació, 1(2), 45-64. https://bit.ly/2GTjJjv
  5. Antón, A. y Gómez, M. (2016). La geometría a través del arte en Educación Infantil. Enseñanza & Teaching, 34(1), 93-117. http://hdl.handle.net/10366/129611
  6. Armoni, M., Meerbaum-Salant, O., y Ben-Ari, M. (2015). From scratch to “real” programming. ACM Transactions on Computing Education (TOCE), 14(4), 25. DOI: http://dx.doi.org/10.1145/2677087
  7. Baeza, M. Á., Claros, F. J., Sánchez, M. T., y Arnal, M. (2017). Pensamiento Matemático Avanzado y Scratch: El Caso del Máximo Común Divisor. Pensamiento Matemático, 7(2), 43-64.
  8. Barrow, L., Markman, L., y Rouse, C. E. (2009). Technology’s edge: The educational benefits of computer-aided instruction. American Economic Journal: Economic Policy, 1(1), 52-74. https://doi.org/10.1257/pol.1.1.52
  9. Boiten, E. A. (2004). Turtle Graphics: Exercises in Haskell. Canterbury: University of Kent. https://bit.ly/2AqY6l2
  10. Boytchev, P. (2014). Logo Tree Project. Retrieved from https://bit.ly/2s6MC1y
  11. Cabezas, J., y Hernández-Encinas, L. (1988). Geometría esférica en logo. Gaceta matemática, (1),13-24. https://bit.ly/2Tu7sDU
  12. Calao L.A., Moreno-León J., Correa H.E., y Robles G. (2015). Developing Mathematical Thinking with Scratch. In G. Conole, T. Klobučar, C. Rensing, J. Konert, E. Lavoué (Eds.), Design forTeaching and Learning in a Networked World (pp. 17-27). Cham: Springer. https://doi.org/10.1007/978-3-319-24258-3_2
  13. Calder, N. (2010). Using Scratch: An integrated problem-solving approach to mathematical thinking. Australian Primary Mathematics Classroom, 15(4), 9-14. https://bit.ly/2LQ1XN0
  14. Cano, E. V., y Delgado, D. F. (2015). La creación de videojuegos con Scratch en Educación Secundaria. Communication papers: media literacy and gender studies, 4(6), 63-73. https://communicationpapers.revistes.udg.edu/communication-papers/article/view/22083
  15. Capot, R. B., y Espinoza, R. M. (2015). Desarrollo del pensamiento computacional con Scratch. Nuevas Ideas en Informática Educativa, 616-620. En J. Sánchez (editor), Nuevas Ideas en Informática Educativa, 11, 616-620. http://www.tise.cl/volumen11/TISE2015/616-620.pdf
  16. Carrillo, P. E., Onofa, M., y Ponce, J. (2011). Information technology and student achievement: Evidence from a randomized experiment in Ecuador. Inter-American Development Bank WP No. 223. http://dx.doi.org/10.2139/ssrn.1818756
  17. Cotter, C. (1998). Turtle Graphics Interface for REDUCE Version 3. Retrieved from https://bit.ly/2VvOZbz
  18. Dezuanni, M., y Monroy-Hernández, A. (2012). «Prosumidores interculturales»: la creación de medios digitales globales entre los jóvenes. Comunicar, 38, 59-66. https://doi.org/10.3916/C38-2012-02-06
  19. Erol, O., y Kurt, A. A. (2017). The effects of teaching programming with Scratch on pre-service information technology teachers’ motivation and achievement. Computers in Human Behavior, 77, 11-18. https://doi.org/10.1016/j.chb.2017.08.017
  20. Esteban, E. G., y Castro, G. W. (2018). Autonomía y TIC en el aprendizaje de jóvenes y adultos. Pedagogía socio-crítica a través de talleres de Scratch. Praxis Educativa, 22(3), 71-82. https://doi.org/10.19137/praxiseducativa-2018-220308
  21. Fabres, R. (2016). Estrategias metodológicas para la enseñanza y el aprendizaje de la geometría, utilizadas por docentes de segundo ciclo, con la finalidad de generar una propuesta metodológica atingente a los contenidos. Estudios pedagógicos (Valdivia), 42(1), 87-105. http://dx.doi.org/10.4067/S0718-07052016000100006
  22. Fayad, A. M. (2014). Primer curso de programación en Enseñanza Media: la experiencia con scratch. Didasc@ lia: Didáctica y Educación, 5(1), 47-54. http://revistas.ult.edu.cu/index.php/didascalia/article/view/257
  23. Ferreira, W. C., y de Oliveira, C. A. (2018). O Scratch nas aulas de matemática: caminhos possíveis no ensino das áreas de figuras planas. Cadernos Cenpec| Nova série, 8(1), 78-97. http://dx.doi.org/10.18676/cadernoscenpec.v8i1.390
  24. Fesakis, G., y Serafeim, K. (2009). Influence of the familiarization with scratch on future teachers’ opinions and attitudes about programming and ICT in education. ACM SIGCSE Bulletin, 41(3), 258-262. https://doi.org/10.1145/1595496.1562957
  25. Franco-Mariscal, A. J., y Sánchez, P. S. (2019). Un enfoque basado en juegos educativos para aprender geometría en educación primaria: Estudio preliminar. Educação e Pesquisa, 45. https://doi.org/10.1590/s1678-4634201945184114
  26. Garbayo, M., Roanes-Lozano, E., y Roanes-Macías, E. (2001). Tort-Decó: a “turtle geometry”-based package for drawing periodic designs. Mathematical and computer modelling, 33(4-5),321-340. https://doi.org/10.1016/S0895-7177(00)00247-8
  27. Garcia, D., Segars, L., y Paley, J. (2012). Snap! (build your own blocks): tutorial presentation. Journal of Computing Sciences in Colleges, 27(4), 120-121. https://bit.ly/2C2jLAd
  28. Give’on, Y. S. (1991). Teaching recursive programming using parallel multi-turtle graphics. Computers & Education, 16(3), 267-280. https://doi.org/10.1016/0360-1315(91)90061-U
  29. Grisales-Aguirre, A. M. (2018). Uso de recursos TIC en la enseñanza de las matemáticas: retos y perspectivas. Entramado, 14(2), 198-214. http://dx.doi.org/10.18041/1900-3803/entramado.2.4751
  30. Harvey, B. (1997). Computer Science Logo Style: Symbolic Computing (Vol. 1). Cambridge: MIT Press. https://bit.ly/2LOCW4X
  31. Harvey, B., y Mönig, J. (2017). Snap! Reference manual. Retrieved from https://bit.ly/2TvzK0L
  32. Kafai, Y., y Resnick, M. (1996). Constructionism in practice. Designing, thinking and learning in a digital world. Mahwah: Lawrence Erlbaum Associates.
  33. Kutzler, B., y Stoutemyer, D. R. (1997). Great TI-92 Programs (Vol. 1). Austria: bk teachware.
  34. Lechner, J., Roanes-Lozano, E., Roanes-Macias, E., y Wiesenbauer, J. (1997). An implementation of Turtle Graphics in Derive 3. The Bulletin of the Derive User Group, 25, 15-22.
  35. Lifelong Kindergarten Group. (2013). Getting Started with Scratch 2.0. Available from https://bit.ly/2JHEzyQ
  36. Lodoño, N., Zaldívar, J. D., y Montes, N. C. (2018). Enseñanza del teorema de pitágoras usando GeoGebra. Revista Electrónica AMIUTEM, 4(2), 113-126.
  37. Maloney, J., Resnick, M., Rusk, N., Silverman, B. y Eastmond, E. (2010). The scratch programming language and environment. ACM Transactions on Computing Education (TOCE), 10 (4), 16. https://doi.org/10.1145/1868358.1868363
  38. Marji, M. (2014). Learn to Program with Scratch: A Visual Introduction to Programming with Games, Art, Science, and Math. San Francisco: No Starch Press.
  39. Marmolejo, J. E., y Campos, V. (2012). Pensamiento lógico matemático con scratch en nivel básico. Revista vínculos, 9(1), 87-95. https://revistas.udistrital.edu.co/index.php/vinculos/article/view/4208
  40. Marrero, I. (2019). Desde LOGO hasta Scratch y más allá. NÚMEROS, 100, 213-217. http://funes.uniandes.edu.co/14801/
  41. Maturana, H. F., y Curbeira, D. (2018). La formación de habilidades espaciales desde la matemática en los estudiantes de cuarto y quinto de básica primaria. Revista Conrado, 14(65), 267-274. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1990-86442018000500267
  42. McManus, S. (2013). Scratch programming in easy steps: covers Versions 2.0 and 1.4. United Kingdom: In Easy Steps Limited.
  43. Mora, T., Escardíbul, J. O., y Di Pietro, G. (2018). Computers and students’ achievement: An analysis of the One Laptop per Child program in Catalonia. International Journal of Educational Research, 92, 145-157. https://doi.org/10.1016/j.ijer.2018.09.013
  44. Muñoz, R., Barcelos, T., Villarroel, R., y Silveira, I. F. (2017). Using Scratch to Support Programming Fundamentals. Journal on Computational Thinking (JCThink), 1(1), 68.DOI: 10.14210/ijcthink.v1.n1.p68
  45. Nagle, J. (2014). Getting to Know Scratch. New York: The Rosen Publishing Group.
  46. Neuwirth, E. (2001). Turtle Ballet: Simulating Parallel Turtles in a Nonparallel LOGO Version. In G. Futschek. (Eds.), European Logo conference Eurologo 2001, a turtle odyssey (pp. 263-270). Austria: Osterreichische Computer Gesellschaft.
  47. Orcos, L., Jordán, C., y Magreñán, Á. A. (2018). Uso del holograma como herramienta para trabajar contenidos de geometría en Educación Secundaria. Pensamiento Matemático, 8(2), 91-100. http://hdl.handle.net/10251/137998
  48. Osorio, V. L., Pino-Fan, L. R., y González, N. G. (2017). Esquemas argumentativos de estudiantes de secundaria en ambientes de geometría dinámica. Avances de Investigación en Educación Matemática, (12), 39-57.
  49. Otrel-Cass, K., Forret, M., y Taylor, M. (2009). Opportunities and challenges in technologyrich classrooms: Using the Scratch software. SET: Research Information for Teachers 1, 49–54.
  50. Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., y Lahmine, S. (2015). Learning basic programming concepts by creating games with scratch programming environment. Procedia- Social and Behavioral Sciences, 191, 1479-1482. https://doi.org/10.1016/j.sbspro.2015.04.224
  51. Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
  52. Pardo, A., y Ruiz, M. A. (2009). Gestión de datos con SPSS Statistics. Madrid: Editorial Síntesis.
  53. Permatasari, L., Yuana, R. A., y Maryono, D. (2018). Implementation of Scratch Application to Improve Learning Outcomes and Student Motivation on Basic Programming Subjects. IJIE -Indonesian Journal of Informatics Education, 2(2). http://dx.doi.org/10.20961/ijie.v2i2.15206
  54. Rachum, R. (2011). PythonTurtle. Retrieved from https://bit.ly/2t0hAbi
  55. Rafalski, J. P., y Santos, O. L. (2016). Uma experiência com a Linguagem Scratch no Ensino de Programação com Alunos do Curso de Engenharia Elétrica. In Anais do Workshop de Informática na Escola, 22 (1). http://dx.doi.org/10.5753/cbie.wie.2016.612
  56. Ramalho, R., y Ventura, A. (2017). O potencial do scratch no ensino–aprendizagem da geometria.
  57. Revista de Estudios e Investigación en Psicología y Educación, 172-175. http://dx.doi.org/ 10.17979/reipe.2017.0.13.2666
  58. Resnick, M. (1995). New paradigms for computing, new paradigms for thinking. In A. A. diSessa,et al. (Eds.), Computers and exploratory learning (pp. 31-43). Berlin, Heidelberg: Springer.
  59. Resnick, M. (1997). Turtles, termites, and traffic jams: Explorations in massively parallel microworlds. Cambridge: MIT Press.
  60. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner,A., Rosenbaum, E., Silver, J., Silverman, B., y Kafai, Y. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60-67. https://doi.org/10.1145/1592761.1592779
  61. Roanes-Lozano, E. (2018). Geometría de la tortuga con Scratch 2.0 y enseñanza de matemática elemental. Madrid: Universidad Complutense de Madrid. Disponible en https://bit.ly/2F9y88Y
  62. Roanes-Lozano, E., y Roanes-Macías, E. (1994a). An implementation of “Turtle Graphics” in Maple V. Maple Technical Newsletter, 1994 Special Issue, 82-85. https://bit.ly/2Av4Det
  63. Roanes-Lozano, E., y Roanes-Macías, E. (1994b). Nuevas tecnologías en Geometría. Madrid: Editorial Complutense. https://bit.ly/2Rv5iGp
  64. Roberts, R. (1987). Power of Turbo PROLOG: The Natural Language of Artificial Intelligence. New York: McGraw-Hill Professional. https://bit.ly/2RuvO2V
  65. Sáez-López, J. M., Román-González, M., y Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools. Computers & Education, 97, 129-141. https://doi.org/10.1016/j.compedu.2016.03.003
  66. Sancho, F. (2012). NetProLogo. Retrieved from https://bit.ly/2LXjvGV
  67. Scaffidi, C., y Chambers, C. (2012). Skill progression demonstrated by users in the Scratch animation environment. International Journal of Human-Computer Interaction, 28(6), 383-398. https://doi.org/10.1080/10447318.2011.595621
  68. Shin, S., y Park, P. (2014). A study on the effect affecting problem solving ability of primary students through the Scratch programming. Advanced Science and Technology Letters,59, 117-120. DOI: 10.14257/astl.2014.59.27
  69. Silva, C. J. V., Chiquillo, Z. L. M., y Chinome, J. R. C. (2017). Scratch. Estrategia didáctica para el aprendizaje de las tablas de multiplicar en escuela nueva. Educación y Ciencia, (20), 43-60.
  70. Simanca, F. A., Abuchar, A., Blanco, B., y Carreño, P. (2017). Implementación de herramientas tecnológicas en los procesos de enseñanza-aprendizaje de los triángulos. I + D Revista de Investigaciones, 10(2), 71-79. https://doi.org/10.33304/revinv.v10n2-2017006
  71. Sims-Coomber, H., Martin, R., y Thorne, M. (1991). A non-Euclidean implementation of LOGO. Computers & Graphics, 15(1), 117-130. https://doi.org/10.1016/0097-8493(91)90038-J
  72. Sims-Coomber, H., y Martin, R. (1994). An implementation of LOGO for elliptic geometry. Computers & graphics, 18(4), 543-552. https://doi.org/10.1016/0097-8493(94)90068-X
  73. Smith, C. P., y Neumann, M. D. (2014). Scratch it out! Enhancing geometrical understanding. Teaching Children Mathematics, 21(3), 185-188. https://doi.org/10.5951/teacchilmath.21.3.0185
  74. Suárez, W. A., y León, O. L. (2017). El aprendizaje de la visualización espacial en niños y en niñas. Horizontes Pedagógicos, 18(2), 110-119. https://horizontespedagogicos.ibero.edu.co/article/view/18209
  75. Tanrikulu, E., y Schaefer, B. C. (2011). The users who touched the ceiling of Scratch. Procedia-Social and Behavioral Sciences, 28, 764–769. https://doi.org/10.1016/j.sbspro.2011.11.140
  76. Taylor, M., Harlow, A., y Forret, M. (2010). Using a computer programming environment and an interactive whiteboard to investigate some mathematical thinking. Procedia Social and Behavioral Sciences, 8, 561–570. https://doi.org/10.1016/j.sbspro.2010.12.078
  77. Tenório, M. M., Dias, C. B., Kleinubing, J. J., Gaffuri, S. L., y dos Santos Jr, G. (2017). Conteúdos Matemáticos: Propostas com a Aplicação do Scratch. Conexões-Ciência e Tecnologia, 10(4), 60-70. https://doi.org/10.21439/conexoes.v10i4.1105
  78. Topalli, D., y Cagiltay, N. E. (2018). Improving programming skills in engineering education through problem-based game projects with Scratch. Computers & Education, 120, 64-74. https://doi.org/10.1016/j.compedu.2018.01.011
  79. Torres, J. M., Palacios, J., y Martínez, C. (2017). La práctica docente en la asignatura de geometría en instituciones educativas colombianas. Gestion, Competitividad E Innovación, 5(2), 305-326.
  80. Wang, H. Y., Huang, I., y Hwang, G. J. (2016). Comparison of the effects of project-based computer programming activities between mathematics-gifted students and average students. Journal of Computers in Education, 3(1), 33-45. https://doi.org/10.1007/s40692-015-0047-9
  81. Warner, T. L. (2014). Scratch 2.0 Sams Teach Yourself in 24 Hours. Estados Unidos: Sams Publishing.
  82. Wilensky, U. (2013). NetLogo 5.0.5 User Manual. Retrieved from https://bit.ly/2GUQtJs

Downloads

Download data is not yet available.

Similar Articles

<< < 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.