Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 3 No. 1 (2000): Marzo

SOBRE LA PREPARACIÓN TEÓRICA DE LOS MAESTROS DE MATEMÁTICAS

Submitted
March 23, 2025
Published
2000-03-31

Abstract

On the basis of various experiences in this area, the authors present in this article some re-flections on the training of teachers of mathematics. After taking certain general positions on some "controversial" issues in the current international debate, the authors focus their attention on the study of language, seen from various perspectives, and on the difference between the positions of Piaget and Vygotski with regard to this topic, proposing that arguments of this type should be part of the expertise of future lecturers, given that didactics makes up a part of the larger field of communication.

References

  1. Arzarello, F. (1983). Matematica e lingüística. Milano: Angeli.
  2. Arzarello, F. (1987). Le strutture linguistiche di un testo matematico. En: D'Amore, B. (Ed.). La matematica e la sua didattica, Memorias del I Congreso Nacional "Incontri con la Matematica", Castel San Pietro Terme 6-8 noviembre 1987, 9-15. Roma: Armando.
  3. Brousseau, G. (1988). Utilité et interêt de la didactique pour un professeur de collège. Petit x. 21, 47-68.
  4. Brousseau, G. (1989). La tour de Babel. Études en didactiques des mathématiques, 2, Irem de Bordeaux.
  5. Brown, S.L., Cooney, T.J. & Jones, D. (1990). Mathematics teacher education. En: Houston, W.R. (Ed.), Handbook of research on teacher education (pp. 639-656). Nueva York, EE. UU Macmilian
  6. D'Amore, B. (1993). Esporre la matematica appresa: un problema didattico e luinguistico, La Matematica e la sua didattica, 3, 289-301.
  7. D'Amore, B. & Maier, H. (1998). Pupils writing as an instrument of individual assessment. Manuscrito presentado para su publicación.
  8. D'Amore, B. & Frabboni, F. (1995). Didattica generale e didattiche disciplinari. Milano, Italia: Angeli.
  9. D'Amore, B. & Giovannoni, L. (1997). Coinvolgere gli allievi nella costruzione del sapere matematico, La Matematica e la sua didattica, 4, 360-399.
  10. D'Amore B., & Martini B. (1997a). Contratto didattico, modelli mentali e modelli intuitivi nella risoluzione di problemi scolastici standard, La Matematica e la sua didattica, 2, 150-175.
  11. D'Amore B., & Martini B. (1997b). Perché si parla ancora tanto di metacognizione?. En: D'Amore, B. & Pellegrino, C. (Eds.), Convegno per i sessantacinque anni di Francesco Speranza, Memorias del Congreso Homónimo (pp. 34-39). Bolonia, Italia. 11 de octubre, 1997.
  12. D'Amore B., & Martini B. (1997c). II contesto naturale. Influenza della lingua naturale nelle risposte a test di matematica. En L'insegnamento della matematica e delle scienze integrate. Manuscrito presentado para su publicación.
  13. D'Amore, B. & Sandri, P. (1994). Everyday language and 'external' models in an adidactic situation. En: N. A. Malara and L. Rico, Proceedings of the First Italian-Spanish Research Symposium in Mathematical Education (pp. 115-122). Modena, Italia. 15-19, February 1994.
  14. D'Amore, B. & Sandri, P. (1996). Fa' finta di essere... Indagine sull'uso della lingua comune in contesto matematico nella scuola media, L'insegnamento della matematica e delle scienze integrate, 19A, 3, 223-246.
  15. Duval, R. (1995). Sémiosis et pensée humaine. Berne: Peter Lang.
  16. Duval, R. (1996a). Struttura del ragionamento deduttivo e apprendimento della dimostrazione, La Matematica e la sua didattica, 4, 370-393.
  17. Duval, R. (1996b). Argomentare, dimostrare, spiegare: continuità o rottura cognitiva?, La Matematica e la sua didattica, 2, 130-152.
  18. Duval, R. (1996c). Quale cognitivo per la didattica della matematica?, La Matematica e la sua didattica, 3, 250-269.
  19. Duval. R. (1996d). II punto decisivo nell'apprendimento della matematica: la conversione e l'articolazione delle rappresentazioni. En: D'Amore, B., Convegno del decennale, Atti del X Congreso Nacional Incontri con la Matematica (pp. 11-26). Castel San Pietro Terme 15-17 noviembre, 1996. Bolonia, Italia: Pitagora.
  20. Duval, R. (1996-1997). Notas preliminares no publicadas del curso dado en el IUFM de Gravelines.
  21. Feiman-Nemser, S. (1983). Learning to teach. En: Shulman, L. & Sykes, G. (Eds.), Handbook of teaching and policy (pp. 150-170). Nueva York, EE. UU.: Longman.
  22. Laborde, C. (1982). Langue naturelle et écriture simbolique: deux codes en interaction dans l'eneseignement des mathématiques, Thèse, Grenoble: Université J. Fourier.
  23. Laborde, C. (1995). Occorre apprendere a leggere e scrivere in matematica?, La Matematica e la sua didattica, 2, 121-135.
  24. Lappan, G. & Even, R. (1989), Learning to teach: Constructing meaningful understanding of mathematical content. Draft paper 89-3. East Lansing, MI: NCRTE, Michigan State University.
  25. Lappan, G., Fitzgerald, W., Phillips, E., Winter, M.J., Lanier, P., Madsen-Nason, N., Even, R., Lee, B., Smith, J. & Weinberg, D. (1988). The midle grades mathematics project: Good mathematics, taught well, East Lansinbg, MI: Michigan State University.
  26. Lappan, G. & Theule-Lubienski, S. (1992). Training teachers or educating professionals? What are the issues and how are they being resolved?, Selected Lectures from the 7th ICME (pp. 249-261). Québec, Canadá.
  27. Maier, H. (1989). Conflit entre langue mathématique et langue quotidienne pour les élèves. Cahiers de didactique des mathématiques, 3, 86-118.
  28. Margolinas, C. (1993). De l'importance du vrai et du faux dans la classe de mathématique. Grenoble, Francia: La Pensée Sauvage.
  29. NCTM (1989). Curriculum and evaluation standards for school mathematics, Reston, VA
  30. Nespor, J. (1987). The role of beliefs in the practice of teaching, Journal of Curriculum Studies, 19,317-328.
  31. Peterson, P., Fennema, E., Carpenter, T. & Loef, M. (1989). Teachers' pedagogical content beliefs in mathematics, Cognition and Instruction, 6 (1), 1-40.
  32. Piaget, J. (1923). Le langage et la pensée chez l'enfant. Delachaux et Niestlé, Neuchâtel.
  33. Schneuwly, B., & Bronckart, J.P. (1985). Vygotski aujourd'hui. Neuchâtel-Paris, Francia: Delachaux et Niestlé.
  34. Schram, P. & Wilcox, S. (1988). Changing preservice teachers' conceptions of mathematics learning. En: Behr, M., LaCampagne, C. & Montague-Wheeler (Eds.), Proceedings of the Tenth Annual Meeting of the PME, North American Chapter (pp. 349-355). DeKalb, IL: Northern University.
  35. Schweiger, F. (1992). Mathematics is a language, Selected Lectures from the 7th ICME, (pp. 297-309). Québec, Canadá.
  36. Thompson, A.G. (1984). The relationship of teachers' conceptions of mathematics and mathe-matics teaching to instructional practice, Educational Studies in Mathematics, 15 (2), 105-127.
  37. Vergnaud, G. (1990). La théorie des champs conceptuels, Recherches en didactique des mathématiques, 10/2.3, 133-170.
  38. Von Glaserfeld, E. (1992). Theories of Learning Mathematics, WG4, Proceedings of the ICME 7 (pp. 120-127) Québec, Canadá.
  39. Watzlawick, P., Beavin, J.H. & Jackson, D.D. (1967). Pragmatic of the human communica-tion. New York, EE. UU.: W.W. Norton & Company.

Downloads

Download data is not yet available.

Most read articles by the same author(s)