Saltar para menu de navegação principal Saltar para conteúdo principal Saltar para rodapé do site

Artículos

Vol. 25 N.º 3 (2022): Novembro

CONSTRUÇÃO DO CONCEITO DE FRAÇÃO SOB A PERSPECTIVA DE MEDIÇÃO: CONTRIBUIÇÕES DO 4A INSTRUCTIONAL MODEL

DOI
https://doi.org/10.12802/relime.22.2531
Enviado
junho 20, 2023
Publicado
2022-11-30

Resumo

Recherche révèle qu’une solide compréhension des fractions façonne les performances futures des élèves en mathématiques
et que leur connaissance des fractions peut dépendre de la façon dont elle est enseignée. Les chercheurs rapportent que l’enseignement des fractions dans une perspective de mesure peut favoriser la compréhension conceptuelle des élèves. Nous avons étudié cette hypothèse auprès d’élèves du primaire brésilien et utilisé l’approche pédagogique 4A modèle pédagogique. Les résultats révèlent que les étudiants ont démontré une connaissance conceptuelle de la comparaison de l’amplitude des fractions et de la construction de l’équivalence des fractions. Ils ont pu évoquer des images mentales de ce contenu et écrire de manière compétente des expressions mathématiques de comparaisons de magnitude de fraction. Des recherches supplémentaires sont nécessaires pour étudier comment la perspective de mesure enseignée par le modèle pédagogique 4A influence la compréhension des élèves des opérations de fraction.

Referências

  1. Aytekin, C. (2020). Development of fraction concepts in children. Em O. Zahal (Ed.), Academic Studies Educational Sciences – II (pp. 21-48). Gece Kitapligi.
  2. Ball, D. (1990). Prospective elementary and secondary teachers’ understanding of division. Journal for Research in Mathematics Education, 21(2), 132–144. https://doi.org/10.2307/749140
  3. Booth, J. e Newton, K. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37(4), 247-253. https://doi.org/10.1016/j.cedpsych.2012.07.001
  4. Brousseau, G. (1983). Les obstacles épistémologiques et les problèmes en mathématique. Recherches en Didactique des Mathématiques, 4(2), 165-198. https://hal.science/file/index/docid/550256/filename/Brousseau_1976_obstacles_et_problemes.pdf
  5. Caraça, B. (1951). Conceitos Fundamentais da Matemática. Tipografia Matemática.
  6. Christou, K. (2015). Natural number bias in operations with missing numbers. ZDM Mathematics Education, 47, 747-758. https://doi.org/10.1007/s11858-015-0675-6
  7. Gattegno, C. (1970). What we owe children: The subordination of teaching to learning. Avon.
  8. Kerslake, D. (1986). Fractions: A report of the strategies and errors in secondary mathematics project. Eric.
  9. Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Lawrence Erlbaum Associates.
  10. Mack, N. (1993). Learning rational numbers with understanding: the case of informal knowledge. Em T. Carpenter, E. Fennema, e T. Romberg (Eds.), Rational numbers: an integration of research (pp. 85-105). Lawrence Erlbaum. https://doi.org/10.4324/9780203052624
  11. Mack, N. (1995). Confounding whole-number and fraction concepts when building on informal knowledge. Journal for Research Mathematics Education, 26, 422–441. https://doi.org/10.2307/749431
  12. McMullen, J., Laakkonen, E., Hannula-Sormunen, M. M. e Lehtinen, E. (2015). Modeling the developmental trajectories of rational number concept(s). Learning and Instruction, 37, 14–20. https://doi.org/10.1016/j.learninstruc.2013.12.004
  13. National Mathematics Advisory Panel [NMAP] (2008). Foundations for success: Final report of the national mathematics advisory panel. US Department of Education.
  14. Newton, K. (2008). An extensive analysis of pre-service elementary teachers: Knowledge of fractions. American Educational Research Journal, 45(4), 1080–1110. https://doi.org/10.3102/0002831208320851
  15. Ni, Y. (2001). Semantic domains of rational numbers and the acquisition of fraction equivalence. Contemporary Educational Psychology, 26, 400–417. https://doi.org/10.1006/ceps.2000.1072
  16. Ni, Y. e Zhou, Y-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychology, 40, 27–52. https://doi.org/10.1207/s15326985ep4001_3
  17. Nunes, T. e Bryant, P. (2008). Understanding rational numbers and intensive quantities. Em Key understanding in mathematics learning (pp. 1-31). Nuffield Foundation. https://www.nuffieldfoundation.org/wp-content/uploads/2020/03/P3.pdf

Downloads

Não há dados estatísticos.

Artigos Similares

1 2 3 4 5 6 7 8 9 10 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.