Saltar para menu de navegação principal Saltar para conteúdo principal Saltar para rodapé do site

Artículos

Vol. 18 N.º 1 (2015): Marzo

A FUNCTIONAL GRAPHIC APPROACH TO INEQUATIONS

DOI
https://doi.org/10.12802/relime.13.1814
Enviado
julho 2, 2023
Publicado
2015-03-31

Resumo

Apresentamos alguns resultados de uma pesquisa com cinco professores de Matemática que trabalharam com uma abordagem funcional gráfica para resolver inequações. Desenvolvemos e aplicamos atividades usando os registros algébrico, gráfico e da língua materna (Duval, 1995, 2000), provocando tratamentos e conversões, buscando trazer à tona as falhas cometidas por estes professores ao usarem métodos algébricos, por meio da comparação desses com métodos gráficos de resolução. Analisamos os protocolos dos professores em busca de aspectos formais, intuitivos e algorítmicos (Fischbein, 1993) e esta análise mostrou que esses professores não procuram justificativas matemáticas para explicar porque os métodos algébricos e gráficos usados apresentaram soluções diferentes, o que evidenciou que não dominam os aspectos formais dos métodos de resolução algébrica que, em geral, usam em salas de aula para resolver inequações.

Referências

  1. Bachelard, G. (1996). A formação do espírito científico (1a ed.). (E. Abreu, Trad.). Rio de Janeiro, Brasil: Contraponto. (Reimpreso de La Formation de l’esprit scientifique: contribution à une psychanalyse de la connaissance, 1938, Paris, França: Libraine Philosophique J. Vrin)
  2. Bazzini, L. & Tsamir, P. (2003). Connections between theory and research findings: the case of inequalities. In M. A. Mariotti (Ed.), Proceedings of the 3rd Conference of the European Society for Research in Mathematics Education (Vol. 10, pp. 1-3). Bellaria, Italia: ERME.
  3. Borello, M. y Lezama, J. (2011). Hacia una resignificacion de las desigualdades e inequaciones a partir de las prácticas del profesor. En P. Lestón (Ed.), Acta Latinoamericana de Matemática Educativa (Vol. 24, pp. 921-929). México, DF: RELME.
  4. De Souza, V. H. (2008). O uso de vários registros na resolução de inequações - uma abordagem funcional gráfica (Tese de Doutorado inédita). Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil.
  5. De Souza, V. H. & Campos, T. M. (2005). Sobre a resolução da inequacao x^2 < 25. IX Encontro Brasileiro de Estudantes de Pós-Graduação em Educação Matemática (Vol. 1, p. 40). São Paulo, Brazil: FEUSP.
  6. Duval, R. (2000). Basic issues for research in Mathematics Education. In M. J. Hoines, & A. B. Fuglestad (Eds.), Proceedings of the 24th Conference fo the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 55-69). Hiroshima, Japan: PME.
  7. Duval, R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Neuchâtel, Suisse: Peter Lang.
  8. Fischbein, E. (1993). The interaction between the formal, the algorithmic and the intuitive components in a mathematical activity. In R. Biehler, R. W. Scholz, R. Strässer, B. Winkelmann (Eds.), Didactics of Mathematics as a scientific discipline (pp. 231-240). Dordrecht, HO: Kluwer.
  9. Kieran, C. (2004). The equation/inequality connection in constructing meaning for inequality situations. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 143-147).
  10. Bergen, Norway: PME.
  11. Radford, L. (2004). Syntax and meaning. In M. J. Hoines, & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 161-166). Bergen, Norway: PME.
  12. Sackur, C. (2004). Problems related to the use of graphs in solving inequalities. In M. J. Hoines, & A. B. Fuglestad (Ed.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 148-152). Bergen, Norway: PME.
  13. Tsamir, P. & Bazzini, L. (2001). Can x=3 be the solution of an inequality? A study of Italian and Israeli students. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 303-310).
  14. Utrecht, Holland: PME.
  15. Tsamir, P. & Bazzini, L. (2002). Student’s algorithmic, formal and intuitive knowledge: the case of inequalities. In I. Vakalis, D. H. Hallett, D. Quinney, C. Kourouniotis, & C. Tzanakis (Eds.), Proceedings of the Second International Conference on the Teaching of Mathematics. Crete,
  16. Greece: ICTM. Recuperado de http://www.math.uoc.gr/~ictm2/Proceedings/pap511.pdf
  17. Tsamir, P., Almog, N. & Tirosh, D. (1998). Students’ solution of inequalities. In A. Olivier and K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Groupnd Conference of the International Groupnd for the Psychology of Mathematics Education (Vol. 4, pp. 129-136). Stellenbosch, South Africa: PME.

Downloads

Não há dados estatísticos.

Artigos Similares

1 2 3 4 5 6 7 8 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.