Saltar para menu de navegação principal Saltar para conteúdo principal Saltar para rodapé do site

Artículos

Vol. 22 N.º 3 (2019): Novembro

SIGNIFICADOS PARA LA MATEMÁTICA ESCOLAR A PARTIR DE SU USO EN UN ESCENARIO EXTRAESCOLAR. UN EJEMPLO CON LA PROPIEDAD PERIÓDICA

DOI
https://doi.org/10.12802/relime.2019.2231
Enviado
novembro 6, 2022
Publicado
2019-11-01

Resumo

um dos objetivos da matemática escolar é gerar um conhecimento que integre-se de maneira funcional nas nossas vidas. assim, o presente texto se insere na perspectiva teórica da utilização do conhecimento em outros cenários como base para o enriquecimento damatemática escolar. Neste trabalho é analisado o caso da propriedadeperiódica das funções e de seu uso em um cenário de divulgação (museu de ciências). Neste contexto o uso de tal saber na atividade de observação astronômica se coloca lém da aplicação de uma “simples” definição, isto é, se desenvolvem ferramentas e argumentosentorno de um conhecimento matemático capaz de integra-se e serútil ao indivíduo, mas não utilitário. os resultados das análises reportados neste estudo extraescolar criam uma base de ricos significados para a propriedade periódica das funções e, desta forma,gera-se uma matemática escolar funcional para a vida dos estudantes.

Referências

  1. Arnol’d. V.I.(1990). Huygens and Barrow. Newton and Hooke: Pioneers in Mathematical Analysis and Catastrophe Theory from Evolvents to Quasicrystals. Germany: Birkhsuser Verlag. https://doi.org/10.1007/978-3-0348-9129-5
  2. Buendía, G. (2010). Articulando el saber matemático a través de prácticas sociales. El caso de lo periódico. Revista Latinoamericana de Investigación en Matemática Educativa, 13(4), 129-158. Disponible en: http://relime.org/index.php/numeros/todos-numeros/volumen-13/numero-especial-13-4-i/519-201001d
  3. Buendía, G. (2011) The use of periodicity through history: elements for a social epistemology of mathematical knowledge. En Barbin,E., Kronfellner,M., Tzanakis. C., Proceedings of the 6th European Summer University - History and Epistemology in Mathematics Education (pp. 67-78). Austria: Verlag Holzhausen GmbH / Holzhausen Publishing Ltd. Disponible en: http://numerisation.univ-irem.fr/ACF/ACF11010/ACF11010.pdf
  4. Buendía, G. y Cordero, F. (2005). Prediction and the periodic aspect as generators of knowledge in a social practice framework. A socioepistemological study. Educational Studies in Mathematics, 58(3), 299-333. https://doi.org/10.1007/s10649-005-2295-5
  5. Cantoral, R. (2013a). Teoría Socioepistemológica de la Matemática Educativa. Estudios sobre construcción social del conocimiento. México: Gedisa.
  6. Cantoral, R (2013b). Desarrollo del pensamiento y lenguaje variacional. México: Secretaría de Educación Pública.
  7. Cantoral, R., Montiel, G. y Reyes-Gasperini, D. (2014). Hacia una educación que promueva el desarrollo del pensamiento matemático. Escri/viendo. Revista Pedagógica 24, 17-26.
  8. Collette, J. P. (1986). Historia de las matemáticas. Volumen II. México: Siglo Veintiuno Editores
  9. Cordero, F. (2006). El Uso de las Gráficas en el Discurso del Cálculo Escolar una visión Socioepistemológica. En R. Cantoral, O. Covián, R. Farfán, J. Lezama y A. Romo (Eds.), Investigaciones sobre enseñanza y aprendizaje de las matemáticas: Un reporte Iberoamericano (pp. 265-286). México: Díaz de Santos - Comité Latinoamericano de Matemática Educativa A.C.
  10. Cordero, F., Cen, C. y Suárez, L. (2010). Los funcionamientos y formas de las gráficas en los libros de texto: una práctica institucional en el Bachillerato. Revista Latinoamericana de Matemática Educativa, 13(2), 187-214. Disponible en: http://relime.org/index.php/numeros/todos-numeros/volumen-13/numero-13-2/527-201003b
  11. Cross,J. (1994). Theories of elasticit. En I. Grattan - Guiness (ed), Companion Encyplopedia of the History & Philosophy of the Mathematical Sciences, 1023-1033. USA: The Johns Hopkins University Press.
  12. Dreyfus, T. and Eisenberg, T. (1983). The function concept in college students: linearity, smoothness and periodicity. Focus on Learning Problems in Mathematics, 5(3), 119–132.
  13. Euler, L. (1948). Introduction a l’Analyse Infinitésimale. Tomo I. (JB Labey, trans). Chez Bachelier, Imprimeur - Libraire de l’Ecole Polytechnique.
  14. Fallas - Soto, R. (2015). Existencia y Unicidad: estudio socioepistemológico de la solución de las ecuaciones diferenciales ordinarias de primer orden (Tesis de maestría no publicada). México: Centro de Investigación y Estudios Avanzados del IPN.
  15. Guisasola, J. y Morentin, M. (2007). ¿Qué papel tienen las visitas escolares a los museos de ciencias en el aprendizaje de las ciencias? Una revisión de las investigaciones. Enseñanza de las Ciencias 25(3), 405-411. https://ddd.uab.cat/record/39801
  16. Hernández, P. (2015). Los usos del conocimiento matemático en un escenario de divulgación: la periodicidad (Tesis de doctorado no publicada). Guerrero, México: Centro de Investigación en Matemática Educativa de la Universidad Autónoma de Guerrero.
  17. Montiel, G. y Buendía, G. (2012). Un esquema metodológico para la investigación socioepistemológica: ejemplos e ilustración. En A. Rosas y A. Romo (eds.). Metodología en matemática educativa: visiones y reflexiones (pp. 61-88). México: Lectorum.
  18. Zaldívar, D. y Cordero, F. (2015). Conozco al Sr. Movimiento: la situación del resorte. En Cordero, F., La ciencia desde el niñ@. Porque el conocimiento también se siente (pp. 129-140). España: Gedisa.

Downloads

Não há dados estatísticos.

Artigos Similares

1 2 3 4 5 6 7 8 9 10 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.