Saltar para menu de navegação principal Saltar para conteúdo principal Saltar para rodapé do site

Artículos

Vol. 8 N.º 1 (2005): Marzo

¿CUÁNTOS PUNTOS HAY? CONCEPCIONES DE LOS ESTUDIANTES EN TAREAS DE CONSTRUCCIÓN

Enviado
dezembro 7, 2024
Publicado
2005-03-31

Resumo

Os estudantes de ensino médio possue m dificuldades para aceitar que os pontos, representados mediante um corte sobre o plano car tesiano, sejam do mesmo tipo que aqueles que estão na reta. Em general, se supõe que esta dificuldade desaparece se o estudante possui o conceito abstrato de ponto. Neste trabalho partimos da existência de tal dificuldade, mas gostaríamos indagar que características possuem esta dificuldade, para isso os estudantes devem identificar e descrever por escrito e graficamente um conjunto infinito de pontos como uma reta. Propusemos a três grupos de estudantes (16, 17 e 19 anos) uma tarefa que poderia proporcionar informação sobre o tipo de recursos que o estudante possui em mãos para descrever esse conjunto. Encontramos que, muitos dos que se referem a um conjunto infinito o associam às marcas (infinitas ou finitas) das unidades da escala sobre o eixo. Esta é, freqüentemente, a razão pela qual a representação de tal conjunto nessa tarefa se habitua ser discreta. Melhorando três tipos distintos de respostas para a interpretação do conjunto distinguido, em dois desses tipos se observa a idéia de ponto abstrato, mas somente um tipo constitui uma resposta satisfatória.

Referências

  1. Acuña, C. (1997). La ubicación espacial de conjuntos de puntos en el plano. XXXV Aniversario del Cinvestav, 203-223.
  2. Acuña, C. (1998). Difficulty of the high school students to make difference between draw-point and pair-point. Proceedings of XX PME-NA Meeting, 313.
  3. Acuña, C. (1999). Conceptions of high school students about smaller abscissa and bigger ordinate between points on the cartesian plane. Proceedings of the Nineteen Annual Meeting of Psychology of Mathematics Education NA, pp. 445-446.
  4. Acuña, C. (2001a). Concepciones en graficación. El orden entre las coordenadas de los puntos del plano cartesiano. Revista Latinoamericana de Investigación en Matemática Educativa 4 (3), 203-217.
  5. Acuña, C. (2001b). Conversión entre gráficas y ecuaciones a través de la descripción de semiplanos. Educación Matemática, 203-217.
  6. Acuña, C. (2004). Synoptic and epistemological vision of points in a figural task on the cartesian plane. Proceedings of XXVIII PME International Meeting (1), 370.
  7. Dunhan, P. & Osborne, A. (1991). Learning to see: students’ graphing difficulties. Focus on Learning Problems in Mathematics 13 (4).
  8. Duval, R. (1988). Graphiques et équations: l’articulation de deux registres. Annales de Didactique et Sciences Cognitive 1, 235-253.
  9. Duval, R. (1996). Les représentations graphiques: fonctionnement et conditions de leur apprentissage. En Actes de la 46ème Rencontre Internationale de la CIEAEM Meeting Représentations Graphique et Symbolique de Maternelle à L’Université (tome 1, pp. 3-15). Toulouse, France: Université Paul Sabatier-Ed.Antibi.
  10. Duval, R. (1998). Registros de representación semiótica y funcionamiento cognitivo del pensamiento. En F. Hitt (Ed.), Didáctica. Investigaciones en Matemática Educativa II (pp. 173-201). México: Grupo Editorial Iberoamérica.
  11. Duval, R. (1999). Representation, vision and visualization cognitive function in mathematical thinking. Proceedings of the twenty first Annual Meeting PME-NA 1.
  12. Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics 24, 139-162.
  13. Freudenthal, H. (1985). Notation mathématique. En Enciclopedia universalis (tome 13), 144-150.
  14. Friel, S.; Curcio, F. and Bright, G. (2001). Making sense graphs: critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education 32 (2), pp.124-158.
  15. Goldenberg, P. (1988). Mathematics, metaphors, and human factors: mathematical and pedagogical challenges in the educational use of graphical representation of functions. Journal of Mathematical Behavior 7, 135-173.
  16. Gorgorió, N. (1998). Exploring the functionality of visual and non-visual strategies in solving rotation problems. Educational Studies in Mathematics 35, 207-231.
  17. Herscovics, N. (1980). Constructing meaning for linear equations: a problem of representation, Recherché en Didactique des Mathématiques 1 (3), 351-385.
  18. Hershkowitz. (1989). Visualization in geometry- two sides of the coin. Focus on Learning Problems in Mathematics 11 (1), 61-75.
  19. Hölzl, R. (1995). Between drawing and figure. Exploiting mental imagery with computers in mathematics education. Germany: Sutherland and Mason. Kerslake, D. (1977). The understanding of graphs. Mathematics in School 6 (2), 22- 25.
  20. Kerslake, D. (1980). Children’s understanding mathematics. In The CSMS mathematics team. Graphs (pp. 11-16). UK: Kathleen Hart.
  21. Laborde, C. and Caponni, B. (1994). Cabri-géomètre d’un milieu pour apprentissage de la notion de figures géométriques. Recherches in Didactique des Mathématiques 4 (12), 165-210.
  22. Lakatos, I. (1981). Matemáticas, ciencia y epistemología. Madrid, España: Alianza Editorial.
  23. Leinhardt, G.; Zaslavsky, O. and Stein, M. (1990). Functions, graphs and graphing: task, learning and teaching. Review of Educational Research 60 (1), 16.
  24. Mesquita, A. (1998). On conceptual obstacles linked with external representation in geometry. Journal of Mathematical Behavior 17 (2), 183-195.
  25. Parzysz, B. (1988). Knowing vs. seeing. Problems on the plane representation of space geometry figures. Educational Studies in Mathematics 19, 79-92.
  26. Robotti, E. (2001). Verbalization as a mediator between figural and theoretical objects. Proceedings of XXV PME Meeting.
  27. Shama, G. and Dreyfus, T. (1994). Visual, algebraic and mixed strategies in visually presented linear programming problems. Educational Studies in Mathematics 26, 45- 70.
  28. Tsamir, P. (1997). Representations of points. Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education 4, 246-253.

Downloads

Não há dados estatísticos.

Artigos Similares

1 2 3 4 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.