Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículo Especial

Vol. 17 Núm. 4(I) (2014): Diciembre

UTILIZACIÓN DE GESTICULACIONES DE UN ALUMNO DE PREESCOLAR AL RESOLVER UN PROBLEMA GEOMÉTRICO EN DIFERENTES ESPACIOS DE REPRESENTACIÓN CONSTRUIDA

DOI
https://doi.org/10.12802/relime.13.17410
Enviado
julio 6, 2023
Publicado
2014-12-30

Resumen

Este estudio investiga las gesticulaciones de un alumno de preescolar desde un punto de vista cognitivo en una actividad geométrica de carácter comunicativo. Esta actividad involucra un problema de configuración de la forma en dos diferentes tipos de espacio de representación construida (SCR, por sus siglas en inglés), a saber, en la computadora y en papel. En este sentido, seguimos el análisis cognitivo del pensamiento geométrico de Duval (1998) con un enfoque en la aprehensión perceptiva y operativa de las figuras geométricas. Durante la actividad, el niño tuvo que dar instrucciones a un experimentador, de manera que este último pudiera componer la figura dada en el monitor de la computadora utilizando un applet matemático específico y en papel, respectivamente. Se encontró que el niño producía gesticulaciones icónicas y deícticas en diferente grado en cada SCR. Cada tipo de gesticulaciones tenía una función cognitiva diferente en el proceso de solución del problema. Estos descubrimientos proporcionan entendimiento sobre el espacio de trabajo geométrico personal de un niño pequeño al llevar a cabo una tarea de configuración de la forma.

Citas

  1. Battista, M.T. (1999). The importance of spatial structuring in geometric reasoning. Teaching Children Mathematics, 6 (3), 170–177.
  2. Brousseau, G. (1983): Etude de questions d’enseignement, un exemple: la géométrie. Séminaire de didactique des mathématiques et de l’informatique, (pp. 183–226). Grenoble: IMAG.
  3. Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. New York: Routledge.
  4. Duval, R. (1995). Geometrical Pictures: Kinds of representation and specific processes. In R. Sutherland and J. Mason (Eds.), Exploiting mental imagery with computers in mathematical education (pp. 142–157). Berlin: Springer.
  5. Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana and V. Villani (eds.), Perspectives on the Teaching of Geometry for the 21st century (pp. 37–51). Dordrecht: Kluwer Academic.
  6. Ericsson, K. A., and Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87 (3), 215–251.
  7. Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory - motor system in reason and language. Cognitive Neuropsychology, 22, 455–479.
  8. Kim, M., Roth, W. M., and Thom, J. (2011). Children’s gestures and the embodied knowledge of geometry. International Journal of Science and Mathematics Education, 9, 207–238.
  9. Kita, S. (2000). How representational gestures help speaking. In D. McNeill (Ed.), Language and gesture (pp. 162–185). Cambridge, UK: Cambridge University Press.
  10. Kuzniak, A. (2009). Un essai sur la nature du travail géométrique en fin de la scolarité obligatoire en France. In A. Gagatsis, A. Kuzniak, E.Deliyianni, and L.Vivier (Eds), Cyprus and France Research in Mathematics Education (pp. 71–90). Lefkosia: University of Cyprus.
  11. Kuzniak, A. (2012). Understanding the Nature of the Geometric Work Through its Development and its Transformations. Proceedings of the 12th International Congress on Mathematical Education. Seoul, Korea. Retrieved on November 4, 2012 from http://www.icme12.org/upload/submission/1922_F.pdf
  12. Kuzniak, A. and Rauscher, J. C. (2011). How do teachers’ approaches to geometric work relate to geometry students’ learning difficulties? Educational Studies in Mathematics, 77 (1), 129–147.
  13. Lavelli, M., Pantoja, A. P. F., Hsu, H., Messinger, D., & Fogel, A. (2005). Using microgenetic designs to study change processes. In D. M. Teti (Ed.), Handbook of research methods in developmental science (pp. 40–65). Malden, MA: Blackwell Publishing.
  14. Levenson, E., Tirosh, D., & Tsamir, P. (2011). Preschool geometry: Theory, research and practical perspectives. Rotterdam: Sense Publishers.
  15. McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: The University of Chicago Press.
  16. Nemirovsky, R., & Ferrara, F. (2009). Mathematical imagination and embodied cognition. Educational Studies in Mathematics, 70, 159–174.
  17. Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic - cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5 (1), 37-70.
  18. Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70, 111-126.
  19. Radford, L., Bardini, C., Sabena, C., Diallo, P., & Simbagoye, A. (2005). On embodiment, artifacts, and signs: a semiotic - cultural perspective on mathematical thinking. In Chick, H. L. & Vincent, J. L. (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 113-120. Melbourne: PME.
  20. Siegler, R. S. (1995). How does change occur: A microgenetic study of number conservation. Cognitive Psychology, 25, 225–73.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

También puede {advancedSearchLink} para este artículo.