Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Vol. 9 Núm. 3 (2006): Noviembre

TRANFORMACIONES LINEALES EN UN AMBIENTE DE GEOMETRIA DINAMICA

Enviado
septiembre 12, 2024
Publicado
2006-11-30

Resumen

Este artículo reporta la presencia o ausencia de un pensamiento sistémico en los estudiantes, al resolver el problema de extensión lineal, el cual consiste en determinar una transformación lineal por medio de las imágenes de los vectores de una base. Este problema se plantea geométricamente, haciendo uso de las herramientas del software Cabri-géomètre II. Las dificultades que presentan los estudiantes cuando hacen frente a este problema pueden deberse a que ellos no realizan las conexiones adecuadas entre los conceptos involucrados. Este fenómeno puede estudiarse desde el punto de vista de la aproximación teórica el pensamiento teórico versus el pensamiento práctico (Sierpinska, 2000). Uno de los rasgos del pensamiento teórico es que intenta enfocarse en el establecimiento y estudio de las relaciones entre los conceptos y su caracterización dentro de un sistema que también contiene otros conceptos (Sierpinska, et al. 2002).

Citas

  1. Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. En Kaput, A. H. Schoenfeld & E, Dubinsky (Eds.), Research in collegiate mathematics education (pp. 1-32). Providence, RI: American Mathematical Society.
  2. Dorier, J-L. (1997). Exemples d'interaction entre recherches en didactique et en histoire des mathématiques à propos de l'enseignement de l'algèbre linéaire. Fascicule de Didactique des Mathématiques et de l'EIAO (pp. 53-74). Rennes, France: IREM de Rennes.
  3. Dorier, J-L., Robert, A., Robinet, J. et Rogalski, M. (1997). L'algèbre linéaire. l'obstacle du formalisme à travers diverses recherches de 1987 a 1995. En J-L. Dorier (Ed.), L'enseignement de l'algèbre linéaire en question (pp. 105-147). Grenoble, France. La Pensée Sauvage Editions.
  4. Dreyfus, T., Hillel, J. & Sierpinska, A. (1998). Cabri-based linear algebra: transformations. Artículo presentado en CERME-1 (First Conference on European Research in Mathematics Education, Osnabrück). Obtenido de http://www.fmd.uni-osnabrueck.de/ebooks/erme/cerme1-proceedings/papers/g2-dreyfus-et-al.pdf.
  5. Haddad, M. (1999). Difficulties in the learning and teaching of linear algebra. A personal experience. Tesis de maestría, Concordia University, Montreal, Canadá.
  6. Molina, G. (2004). Las concepciones que los estudiantes tienen sobre la transformación lineal en contexto geométrico. Tesis de maestría, Cinvestav, México.
  7. Resnick, L. B. (1987). Education and learning to think. USA: Washington, DC: National Academy Press.
  8. Robert, A. y Robinet, J. (1989). Quelques résultats sur l'apprentissage de l'algèbre linéaire en première année de DEUG. Paris, France: IREM de Paris VII, Cahier de Didactique des Mathématiques 53.
  9. Rogalski, M. (1990). Pourquoi un tel échec de lénseignement de l'algèbre linéaire? In Enseigner autrement les mathématiques en DEUG Première Année (pp. 279-291). Paris, France: Commission Inter-IREM Université.
  10. Sierpinska, A. (2000). On some aspects of students thinking in linear algebra. En J-L. Dorier (Ed.), On the Teaching of Linear Algebra (pp. 209-246). Dortrecht/Boston London: Kluwer Academic Publishers.
  11. Sierpinska, A., Dreyfus, T. & Hillel, J. (1999). Evaluation of a teaching design in linear algebra: the case of linear transformations. Recherches en Didactique des Mathématiques 19 (1), 7-40.
  12. Sierpinska, A., Hillel, J. & Dreyfus, T. (1998). Evaluation of a teaching design in linear algebra: the case of vectors (Technical Report). Montreal, Canada: Concordia University.
  13. Sierpinska, A., Nnadozie, A. & Oktaç, A. (2002). A study of relationships between theoretical thinking and high achievement in linear algebra (Research Report). Montreal, Canadá: Concordia University.
  14. Soto, J. L. (2003). Un estudio sobre las dificultades para la conversión gráfico-algebraica relacionadas con los conceptos básicos de la teoría de espacios vectoriales en R2 y R3. Tesis de doctorado, Cinvestav, México.
  15. Steinbring, H. (1991). Mathematics in teaching processes. The disparity between teacher and student knowledge. Recherches en Didactique des Mathématiques 11 (1), 65-108.
  16. Trgalová, J. et Hillel, J. (1998). Une ingénierie didactique à propos de notios de base de l'algèbre linéaire intégrant l'outil informatique: Cabri-Géomètre II. In Actes du Colloque du Groupe de Didactique des Mathématiques du Québec (pp. 138-149). Montreal, Canada.
  17. Vigotsky, L. S. (1987). The collected works of L. S. Vigotsky (Vol. 1, Problems of General Psichology. Including the volume Thinking and Speech). New York & London: Plenum Press.
  18. Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematics Education in Science and Technology 14, 239-305.
  19. Zazkis, R. (2001). Múltiplos, divisores y factores: explorando la red de conexiones de los estudiantes. Revista Latinoamericana de Investigación en Matemática Educativa 4 (1), 63-92.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

También puede {advancedSearchLink} para este artículo.