Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 19 No. 1 (2016): Marzo

D EVELOPMENT OF THE COMPETENCE IN DIDACTIC ANALYSIS OF TRAINING OF FUTURE MATHEMATICS TEACHERS THROUGH TASK DESIGN

DOI
https://doi.org/10.12802/relime.13.1913
Submitted
June 29, 2023
Published
2023-07-04

Abstract

The aim of this research is to explain how the process of task sequence design made by teacher trainers of future Mathematics teachers influences the development of their competence in didactic analysis. This is achieved, among other indicators, when teacher trainers adequately incorporate and use tools for description, explanation, evaluation and improvement of teaching processes, aimed to future mathematics teachers training. One of the most significant evidence of this developmentis that the designed and implemented sequences were consistent with the curriculum guidelines and were significantly different from those implemented before attending the course.

References

  1. Burger, E. & Starbird, M. (2005). The heart of mathematics: An invitation to effective thinking (2nd ed.). Emeryville, United States of America: Key College Publishing.
  2. Cobb, P., Confrey, J., diSessa, A., Lehrer, R. & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9-13. doi: 10.3102/0013189X032001009
  3. Cobb, P. & Gravemeijer, K. (2008). Experimenting to support and understand learning processes. In A.E. Kelly, R. A. Lesh, & J. Y. Baek (Eds.), Handbook of design research methods in education. Innovations in science, technology, engineering and mathematics learning and teaching (pp. 68-95). New Jersey, United States of America: Lawrence Erlbaum Associates.
  4. Contreras, A., García, M. y Font, V. (2012). Análisis de un Proceso de Estudio sobre la Enseñanza del Límite de una Función. Boletim de Educação Matemática, 26(42B), 667-690.
  5. Even, R. & Ball, D. L. (Eds.) (2009). The professional education and development of teachers of mathematics: The 15th ICMI study. New York, United States of America: Springer.
  6. Fernández, C., Llinares, S. & Valls, J. (2012). Learning to notice students’ mathematical thinking through on-line discussions. ZDM. The International Journal on Mathematics Education, 44(6), 747-759. doi: 10.1007/s11858-012-0425-y
  7. Font, V. (2011). Competencias profesionales en la formación inicial de profesores de matemáticas de secundaria. Unión. Revista Iberoamericana de Educación Matemática, 26, 9-25.
  8. Font, V., Giménez, J., Zorrilla, J., Larios, V., Dehesa, N., Aubanell, A. y Benseny, A. (2012). Competencias del profesor y competencias del profesor de matemáticas: Una propuesta. En V. Font, J. Giménez, V. Larios y J. Zorrilla (Eds.), Competencias del profesor de matemáticas
  9. de secundaria y bachillerato (pp. 61-70). Barcelona, España: Publicaciones de la Universitat de Barcelona.
  10. Font, V., Planas, N. y Godino, J. (2010). Modelo para el análisis didáctico en educación matemática. Infancia y Aprendizaje, 33(1), 89-105.
  11. Giménez, J., Font, V. & Vanegas, Y. (2013). Designing Professional Tasks for Didactical Analysis as a research process. En C. Margolinas (Ed.), Task Design in Mathematics Education (pp. 581-590). Oxford, England: Proceedings of ICMI Study 22.
  12. Godino, J. Batanero, C. & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM: The International Journal on Mathematics Education, 39(1-2), 127-135. doi: 10.1007/s11858-006-0004-1
  13. González, J. & Wagenaar, R. (2003). Tuning Educational Structures in Europe. Informe Final – Proyecto Piloto, Fase 1, Bilbao, Spain: Universidad de Deusto.
  14. Hill, H., Blunk, M., Charambous, Y., Lewis, J., Phelps, G., Sleep, L. & Ball, D. (2008). Mathematical Knowledge for Teaching and the Mathematical Quality of Instruction. An Exploratory Study. Cognition and Instruction, 26(4), 430-511. doi: 10.1080/07370000802177235
  15. INFD (2010). Proyecto de mejora para la formación inicial de profesores para el nivel secundario. Área: Matemática. Buenos Aires, Argentina: Ministerio de Educación, Instituto Nacional de Formación Docente y Secretaría de Políticas Universitarias.
  16. Mason, J. (2002). Researching your own practice. The discipline of noticing. London, England: Routledge-Falmer.
  17. Mason, J. & Johnston-Wilder, S. (2004). Designing and Using Mathematical Tasks. London, England: Tarquin.
  18. Poblete, A. y Díaz, V. (2003). Competencias profesionales del profesor de matemáticas. Números, 53, 3-13.
  19. Pochulu, M. y Font, V. (2011). Análisis del funcionamiento de una clase de matemáticas no significativa. Revista Latinoamericana de Investigación en Matemática Educativa, 14(3), 361-394.
  20. Schoenfeld, A. & Kilpatrick, J. (2008). Toward a theory of proficiency in teaching mathematics. In D. Tirosh & T. Wood (Eds.), Tools and processes in mathematics teacher education (pp. 321-354). Rotterdam, Netherlands: Sense publishers.
  21. Silverman, J. & Thompson, P. (2008). Toward a framework for the development of mathematical knowledge for teaching. Journal of Mathematics Teacher Education, 11(6), 499-511. doi: 10.1007/s10857-008-9089-5
  22. Stein, M., Smith, M., Henningsen, M. & Silver, E. (2000). Implementing standards-based mathematics instruction: a Casebook for Professional Development. New York, United States of America: Teachers College Press.
  23. Swan, M. (2007). The impact of task-based professional development on teachers’ practices and beliefs: a design research study. Journal of Mathematics Teacher Education, 10(4-6), 217-237. doi: 10.1007/s10857-007-9038-8
  24. Tzur, R., Sullivan, P. & Zaslavsky, O. (2008). Examining teachers’ use of (non-routine) mathematical tasks in classrooms from three complementary perspectives: Teacher, teacher educator, researcher. In O. Figueras & A. Sepúlveda (Eds.), Proceedings of the Joint Meeting of the 32nd Conference of the International Group for the Psychology of Mathematics Education, and the
  25. th North American Chapter (Vol. 1, pp. 133-137). Ciudad de México, México: PME.
  26. Weinert, F. (2001). Concept of competence: A conceptual clarification. In D. Rychen & L. Salganik (Eds.), Definition and selection key competencies (pp. 45–65). Gottingen, Germany: Hogrefe & Huber.
  27. Wilson, P., Cooney, T. & Stinson, D. (2005). What constitutes good mathematics teaching and how it develops: Nine high school teachers’ perspectives. Journal of Mathematics Teacher Education, 8(2), 83-111. doi: 10.1007/s10857-005-4796-7
  28. Zaslavsky, O. & Sullivan, P. (Eds.) (2011). Constructing knowledge for teaching: Secondary mathematics tasks to enhance prospective and practicing teacher learning. New York,United States of America: Springer.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.