Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 16 No. 3 (2013): Noviembre

PROBLEMATIZING THE ESTIMATION OF LARGE NUMBERS: MODELING AND THE INFLUENCE OF CONTEXT

DOI
https://doi.org/10.12802/relime.13.1631
Submitted
July 13, 2023
Published
2023-07-13

Abstract

This article introduces the problematization of estimating large numbers. We study the presence of mathematic modeling processes and the influence of context in problem solving that secondary education students propose. As a result of a qualitative analysis, we divided it into three categories: solutionfocused question, strategies and a successful problem solving. This analysis allows us to study the relationships that exist between the strategies proposed by students and the context given when solving a mathematical sentence. We also study the modeling of those situations. From the data collection in this study, we implied that the context may influence the answers students propose for problem solving. We conclude that these kinds of problems may be used as a tool for introducing mathematical modeling in the classroom.

References

  1. Arcavi, A. (2002). The Everyday and the Academic in Mathematics. En M. Brenner & J.Moschkovich (Eds.), Everyday and Academic Mathematics in the Classroom (pp. 12–29). Reston(VA), USA: NCTM
  2. Ärlebäck, J. B. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Montana Mathematics Enthusiast, 6(3), 331–364. DOI: 10.1007/9781-4419-0561-1_52
  3. Barth, H., Kanwisher, N. & Spelke, E. (2003). The construction of large number representations in adults. Cognition, 86, 201–221. DOI: 10.1016/s0010-0277(02)00178-6
  4. Booth J.L. & Siegler, R.S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41(6), 189–201. DOI: 10.1037/0012-1649.41.6.189
  5. Chapman, O. (2006). Classroom practices for context of mathematics word problems. Educational Studies in Mathematics, 62, 211–230. DOI: 10.1007/s10649-006-7834-1
  6. Codes, M., González, M. T., Monterrubio, M. C. & Delgado, M. L. (2011). El análisis matemático a través de las situaciones reales presentes en los libros de texto de educación secundaria. En M. M. Moreno, A. Estrada, J. Carrillo & T. A. Sierra (Eds.), Investigación en Educación Matemática. Comunicaciones de los Grupos de Investigación de la SEIEM. XIV Simposio de la SEIEM (pp. 173–186). Lleida, España: SEIEM.
  7. Doerr, H. & English, L. D. (2003). A modelling perspective on students’ mathematical reasoning about data. Journal for Research in Mathematics Education, 34(2), 110–136.
  8. Doerr, H. M. (2006a). Examining the tasks of teaching when using students’ mathematical thinking. Educational Studies in Mathematics, 62, 3–24. DOI: 10.1007/s10649-006-4437-9
  9. Doerr, H. M. (2006b). Teachers’ ways of listening and responding to students’ emerging mathematical models. ZDM The International Journal on Mathematics Education, 38(3), 255–268. DOI: 10.1007/BF02652809
  10. English. L. D. (2006). Mathematical modeling in the primary school: Children’s construction of a consumer guide. Educational Studies in Mathematics, 63(3), 303–323. DOI: 10.1007/s10649005-9013-1
  11. Esteley, C. B., Villarreal, M. E. & Alagia, H. R. (2010). The overgeneralization of linear models among university students’ mathematical productions: A long-term study. Mathematical Thinking and Learning, 12(1), 86–108. DOI:10.1080/10986060903465988
  12. Freudenthal. H. (1983). Didactical Phenomenology Of Mathematical Structures. Dordrecht, Netherlands: Kluwer Academic Publishers Group.
  13. Gibbs, G. (2007). Analizing qualitative data. London, United Kingdom: SAGE Publications.
  14. Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain. Journal for Research in Mathematics Education, 22(13), 170-218. DOI: 10.2307/749074
  15. Hildreth, D. J. (1983). The use of strategies in estimating measurements. Arithmetic Teacher,30(5), 50–54.
  16. Hogan, T. P. & Brezinski, K. L. (2003). Quantitative estimation: One, two, or three abilities? Mathematical Thinking and Learning, 5(4), 259–280. DOI: 10.1207/S15327833MTL0504_02
  17. Jones, M. G., Gardner, G. E., Taylor, A. R., Forrester, J. H. & Andre, T. (2012). Students’ accuracy of measurement estimation: Context, units, and logical thinking. School Science and Mathematics, 112(3), 171–178. DOI: 10.1111/j.1949-8594.2011.00130.x
  18. Jurdak, M. & Shahin, I. (1999). An ethnographic study of the computational strategies of a group of young street vendors in Beirut. Educational Studies in Mathematics, 40(2), 155–172. DOI: 10.1023/A:1003894908704
  19. Jurdak, M. & Shahin, I. (2001). Problem solving activity in the workplace and the school: the case of constructing solids. Educational Studies in Mathematics, 47(3), 297–315. DOI: 10.1023/A:1015106804646
  20. Jurdak, M. (2006). Contrasting perspectives and performance of high school students on problem solving in real world situated, and school contexts. Educational Studies in Mathematics, 63(3), 283–301. DOI:10.1007/s10649-005-9008-y
  21. De Lange, J. (1996). Using and applying mathematics in education. In A. J. Bishop (Ed.), International Handbook of Mathematics Education (pp. 49–97). Dordrecht, Netherlands: Kluwer Academic Publishers Group.
  22. Lesh, R. & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2), 157–189. DOI: 10.1080/10986065.2003.9679998
  23. Lesh, R. & Zawojewski, J. S. (2007). Problem solving and modeling. In F. K. Lester (Ed.), The second handbook of research on mathematics teaching and learning (pp. 763-804). Charlotte (NC), USA: Information Age Publishing.
  24. Lester, F.K. (1994). Musings about mathematical problem-solving research: 1970-1994. Journal for Research in Mathematics Education, 25(6), 660–675. DOI: 10.2307/749578
  25. Martínez, M. (2008). Contextualización y enseñanza de las matemáticas en la educación primaria. En R. Cantoral, O. Covián, R. M. Farfán, J. Lezama, & A. Romo (Eds.), Investigaciones sobre Enseñanza y aprendizaje de las Matemáticas. Un reporte iberoamericano (pp. 613-641). México (DF), México: CLAME.
  26. Nunes, T., Schliemann, A. D. & Carraher D. W. (1993). Street mathematics and school mathematics. Cambridge, United Kingdom: Cambridge University Press.
  27. Palm, T. (2006). Word problems as simulations of real-world situations: A proposed framework. For the Learning of Mathematics, 26(1), 42–47.
  28. Palm, T. (2008). Impact of authenticity on sense making in word problem solving. Educational Studies in Mathematics, 67(1), 37–58. DOI: 10.1007/s10649-007-9083-3
  29. Peter-Koop, A. (2004). Fermi problems in primary mathematics classrooms: Pupils’ interactive modelling processes. En S. Ruwisch & A. Peter-Koop (Eds.), Mathematics education for the third millennium: Towards 2010 (pp. 454-461) Sydney, Australia: MERGA.
  30. Pólya, G. (1945). How to solve it. Princeton (NJ), USA: Princeton University Press.
  31. Puig, L. (1996). Elementos de resolución de problemas. Granada, España: Ed. Comares.
  32. Puig, L. (2008). Presencia y ausencia de la resolución de problemas en la investigación y el currículo. En R. Luengo, B. Gómez, M. Camacho & L. J. Blanco (Eds.), Actas del XII Simposio de la Sociedad Española de Investigación en Educación Matemática. Badajoz, España: SEIEM.
  33. Reys, R. E., Rybolt, J. F., Bestgen, B. J. & Wyatt, J. W. (1982). Processes used by good computational estimators. Journal for Research in Mathematics Education, 13, 183-201.
  34. Segovia, I. & Castro, E. (2009). La estimación en el cálculo y en la medida: fundamentación curricular e investigaciones desarrolladas en el departamento de didáctica de la matemática de la universidad de granada. Electronic Journal of Research in Educational Psychology, 7(1), 499-536.
  35. Segovia, I., Castro, E., Castro, E. & Rico, L. (1989). Estimación en Cálculo y Medida. Madrid, España: Síntesis.
  36. Segovia, I., Rico, L. & Castro, E. (1996). Estrategias de estimación de cantidades discretas: estudio exploratorio de competencias. Granada, España: Universidad de Granada. Recuperado el 21 de octubre de 2013 de http://cumbia.ath.cx:591/pna/Archivos/SegoviaI96-149.PDF
  37. Schoenfeld, A. H. (2007). Problem solving in the United States, 1970-2008: research and theory, practice and politics. ZDM The International Journal on Mathematics Education, 39(5-6), 537-551. DOI: 10.1007/s11858-007-0038-z
  38. Sriraman, B., Knott, L. & Adrian, H. (2009). The mathematics of estimation: Possibilities for interdisciplinary pedagogy and social consciousness. INTERCHANGE: A Quarterly Review of Education, 40(2), 205–223. DOI: 10.1007/s10780-009-9090-7
  39. Sriraman, B. & Lesh, R. (2006). Modeling conceptions revisited. ZDM The International Journal on Mathematics Education, 38(3), 247–254. DOI: 10.1007/BF02652808
  40. Stocker, D. (2006). Re-thinking real-world mathematics. For the Learning of Mathematics, 26(2), 29–29.
  41. Taylor, A. R., Jones, M. G. & Broadwell, B. (2009). Estimating linear size and scale: Body rulers. International Journal of Science Education, 31(11), 1495–1509. DOI:10.1080/ 09500690802101976
  42. Van Den Heuvel-Panhuizen, M. (2005). The role of contexts in assessment problems in mathematics. For the Learning of Mathematics, 25(2), 2–10.
  43. Verschaffel, L. (2002). Taking the modeling perspective seriously at the elementary level: Promises and pitfalls. In A. D. Cockburn & E. Nardi (Eds.), Proceedings of the 26th PME International Conference (Vol. 1, pp. 64–80). Norwich. United Kingdom: PME
  44. Winter, H. (1994). Modelle als konstrukte zwischen lebensweltlichen situationen undarithmetischen begriffen. Grundschule, 26(3), 10–13.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.