Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 11 No. 3 (2008): Noviembre

STUDY OF THE EPISTEMOLOGICAL CONCEPT SCHEMAS ASSOCIATED WITH THE HISTORICAL EVOLUTION OF THE INFINITESIMAL NOTION

Submitted
May 21, 2024
Published
2008-04-21

Abstract

This study is part of a research project that analyzes the conceptualization processes of the infinitesimal notion in college students majoring in Mathematics. The research project originates with the interest of understanding the processes of teaching and learning key concepts of Mathematical Analysis such as limit, real numbers and continuity among others. From the mathematical and cognition point of view, these notions are recognized as complex. In order to conceptualize them, student' s intuition of infinitesimal is needed. In this paper we describe, analyze, and characterize the epistemological concept schemas associated with the historical evolution of the infinitesimal notion. We identify seven epistemological concept schemas: the infinitesimal as a ratio, as an indeterminate, as a difference, as an increment, as an arithmetic ratio, as a symbol, and as a function. Furthermore, ideas, methods, representations, and problems that mathematicians use in specific contexts are presented.

References

  1. Artigue, M. (1989). Epistemologie et Didactique. Cahier de DIDIRENT, 3. IREM. Université Paris VII.
  2. Artigue, M. (1990). Epistemologie et didactique. Recherches en Didactique des Mathématiques, 10 (2/3), 241-286.
  3. Artigue, M. (1992). The importance and limits of epistemological work in didactics. Proceedings of the 16th Annual Meeting of the Psychology of Mathematics Education 16, Durham, 3, 195-216.
  4. Artigue, M. (1995). The role of epistemology in the analysis of teaching/learning relationships in mathematics education. Planary Lecture, CMESG, Proceedings 7-21.
  5. Bergé, A. y Sessa, C. (2003). Completitud y continuidad revisadas a través de 23 siglos. Aportes a una investigación didáctica. Revista Latinoamericana de Investigación en Matemática Educativa 6(3), 163-197.
  6. Bliss, J., Monk, M. y Ogborn, J. (1983). Qualitative Data Analysis for Educational Research. Londres: Coom Helm.
  7. Boyer, C. (2003). Historia de la Matemática. Madrid: Editorial Alianza.
  8. Brousseau, G. (1983). Les Obstacles épistémologiques et les problemas en Mathématiques. Recherches en Didactique des Mathématiques, 4(2), 164-198.
  9. Cantoral, R. (2001). Matemática Educativa: Un estudio de la formación social de la analiticidad. México: Grupo Editorial Iberoamérica.
  10. Cantoral, R. y Farfan, R. (2004). Desarrollo Conceptual del Cálculo. México: Thomson Editores. Cauchy, A. (1821). Tours d'Analyse de l'Ecole Royale Polytechinique. I partie. Analyse Algébrique. Paris: l'Imprimerie Royale. Obtenido en junio 4, 2005, de http://gallica.bnf.fr/
  11. Chae, S. & Tall, D. (2005). Student's Concept Images for Period Doublings as Embodied Objets in Chaos Theory. Proceedings of the British Society for Research into Learning Mathematics 2, 121-132.
  12. Chin, E. & Tall. D. (2000). Making, having and compressing formal mathematical concepts. In Nakara, T. & Koyama, M. (Eds.), Proceedings of the 24th International Conference of the
  13. International Group for the Psychology of Mathematics Education, 2, 177-184.
  14. Chin, E. & Tall, D. (2001). Developing Formal Mathematical Concepts Over Time. In Marja Van Den Heuvwel-Panhuizen (Ed.), Proceedings of the 25th International Conference of the International Group for the Psychology of Mathematics Educations, 4, 241-248. Utrecth, The Netherlands.
  15. Cornu, B. (1981). Apprentissage de la notion de limite: modéles spontanés et modéles propres', Actes du Cinquième Colloque du Groupe Internationale PME (pp. 322-326.). Grenoble.
  16. Cornu, B. (1983). Quelques obstacles á l'apprentissage des notion des limite. Recherches en Didactiqué des Mathématiques 4, 236-268.
  17. Cornu, B. (1991). Limits. En David. Tall (Ed.), Advanced Mathematical Thinking. 1, 153-166. Boston/London: Kluwer Academic Prés Dordrecht.
  18. Crespo, C. (2005). Un paseo por el paraíso de cantor: problemas y reflexiones acerca del infinito. En Martinez, G. (Ed.), Acta Latinoamericana de Matemática Educativa, 19, 28-34. México: CLAME.
  19. Dreyfus, T. (1990). Advanced mathematical thinking. En Nesher, P. & Kilpatrick, J. (Eds.), Mathematics and Cognition, 113-134. Cambridge: Cambridge University Press.
  20. Dreyfus, T. (1991). Advanced mathematical thinking processes. En Tall, D. (Ed.), Advanced Mathematical Thinking, 3-21. Dordrecht/Boston/London: Kluwer Academic Publishers. Edwards, C. (1979). The Historical Development of the Calculus. New York: Springer-Verlag.
  21. El Bouaizzaui, H. (1988). Conceptions des eleves et des professeurs á propos de la notion de continuité d'une fonction. Thése Ph. D; non publié, Université Laval.
  22. Euclides (1994). Elementos V-IX. (Puertas, Mª L., Trad.). Madrid, España: Gredos. (Trabajo original publicado 1482).
  23. Euler, L. (2000). Introducción al Análisis de los Infinitos. España: SAEM Thales.
  24. Garbin, S. (2005). ¿Cómo piensan los estudiantes entre 16 y 20 años el infinito? La influencia de los modelos, las representaciones y los lenguajes matemáticos. Revista Latinoamericana de Investigación en Matemática Educativa 8 (2), 169-193.
  25. Godino, J. D. (2002a). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactique des Mathématiques 22 (2/3), 237-284.
  26. Godino, J. (2002b). Studying the median: a framework to analyse instructional processes in statistics education. En Phillips, B. (Ed.), ICOTS-6 papers for school teachers. Cape Town: International Association for Statistics Education (CD Rom).
  27. Godino, J.; Ruiz, F.; Roa, R.; Pareja, J. y Recio, A. (2003). Análisis Didáctico de Recursos Interactivos para la Enseñanza de la Estadística en la Escuela IASE Satellite Conference on Statistics Education and the Internet. Berlin, Germany, 11-12 August, 2003. Obtenido en agosto 26, 2006, de http://www.ugr.es/~jgodino/indice_eos.htm.
  28. Harel, G.; Selden, A. y Selden, J. (2006). Advanced Mathematical Thinking. Some PME Perspectivas. En Gutiérrez, A y Boero, P. (Eds.), Handbook of Research on the Psychology of Mathematics Education: Past, Present and Future, 147-172. Rotterdam, The Netherlands: Sense Publishers.
  29. Kleiner, 1. (2001). The Infinitely small and the infinitely large in calculus. Educational Studies in Mathematics 48(2-3), 137-174.
  30. L'Hospital, G. (1696). Analyse des infiniment petits. Paris: L'Imprimmerie Royale. Obtenido en noviembre 5, 2005, de http://www.math-doc.ujf-grenoble.fr/OEUVRES/
  31. Pinto, M. & Tall, D. (1999). Students constructions of formal theory: living and extracting meaning. Proceedings of the 23th International Conference of the International Group for the Psychology of Mathematics Educations 2, 41-48. Haifa, Israel.
  32. Pinto, M. & Tall, D. (2001). Following students' development in a traditional university
  33. classroom, in Marja Van Den Heuvwel-Panhuizen (Eds.), Proceedings of the 25th International Conference of the International Group for the Psychology of Mathematics Educations 4, 57-64. Utrecth, The Netherlands.
  34. Przenioslo, M. (2004). Images of the limit of function formed in the course of mathematical studies at the university. Educational Studies in Mathematics 55 (1 y 3), 103-132.
  35. Przeniosło, M. (2005). Introducing the concept of convergence of a sequence in secondary shoool. Educational Studies in Mathematics 60 (1), 71-93.
  36. Puertas, M. (1994). Los Elementos de Euclides. Colombia: Gredos.
  37. Rodríguez, G.; Gil, J. y García E. (1998). Metodologia de la Investigación Cualitativa. Málaga: Ediciones Aljibe.
  38. Robert, A. (1982). L'Acquisition de la notion de convergente des suites numériques dans l'Enseignement Supérieur. Recherches en Didactique des Mathématiques 3(3), 307-341.
  39. Ruiz, L. (1998). La noción de función: Análisis Epistemológico y didáctico. Tesis doctoral; no publicada, Universidad de Jaen, España.
  40. Sastré, P., Boubée, C., Rey, Maldonado, S. y Villacampa, Y. (2006). Evolución histórica de las metáforas en el concepto de función. Acta Latinoamericana de Matemática Educativa 19, 22-27. México: CLAME.
  41. Sierpinska, A. (1985). La notion d'obstacle épistémologique dans l'enseignement des mathématiques. Actes de la 37e Rencontre CIEAEM, 73-95. Leiden.
  42. Sierpinska, A. (1987a). Obstacles épistémologique relatifs à la notion de limite. Recherches en Didactiqué des Mathématiques, 6(1), 5-67.
  43. Sierpinska, A. (1987b). Trying to overcome epistemological obstacles relative to limits. In 17 year old Humanities Students Proceedings of the 38th Cieaem's Meeting. 183-193. Southampton.
  44. Sierpinska, A. (1992). Understanding the notion of function. En G. Harel y E. Dubinsky (Eds.), The concept function. Aspect Epistemology and pedagogy, 25-58. USA: Mathematical Association of America,
  45. Stake, R. (1983). La evaluación de programas; en especial la evaluación de réplica. En W.B. Dockrell y Hamilton (Eds.), Nuevas Reflexiones sobre la Investigación Educativa. Madrid: Nancea.
  46. Stromholm, P. (1968). Fermat's methods of maxima and minima and tangents. A recoconstruction. Arch His Sci. 5, 47-69.
  47. Tall, D. (2005). The transition form embodied thought experiment and symbolic manipulation to formal proof. Proceedings of the Delta Conference of the International Group for the Psychology of Mathematics Education, 1-16. Frazer, Island, Australia.
  48. Tall, D. (2004). Thinking Through Three Worlds of Mathematics. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 1-16. Bergen, Norway.
  49. Tall, D. (2001). Natural and formal infinities. Educational Studies en Mathematics, 48 (2 y 3), 200-238.
  50. Tall, D. (1995). Cognitive growth in elementary and advanced mathematical thinkhing. Proceedings of the 19th International Conference of the International Group for the Psychology of Mathematics Educations, 61-75. Recife, Brasil.
  51. Tall, D. (1992). The transition to advanced mathematical thinking functions, limits, infinity, and proof. En Grouws, D. (Ed.), Handbook of Research on Mathematics Teaching and Learning, 495-511. Reston, Va: National Council Of Teachers Of Mathematics, Inc.
  52. Tall, D. (1991). The psychology of advanced mathematical thinking. En Tall, D. (Ed.), Advanced Mathematical Thinking, 3-21. Dordrecht/Boston/London: Kluwer Academic Publishers.
  53. Tall, D. & Vinner, S. (1981). Concept image and concept definition in mathematics, whit particular reference to limits and continuity. Educational Studies in Mathematics 12, 151-169.
  54. Vallejo, J. (1819). Compendio de Matemáticas Puras y Mixtas. Madrid: Garrasayaza.
  55. Vinner (1983). Concept definition, concept image and notion of function. International Journal of Mathematical in Sciencie and Technology, 20, 293-305.
  56. Watson, A. & Tall, D. (2002). Embodied action, effect and symbol in mathematical growth. Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, 4, 369-376. Norwich, UK.
  57. Watson, A., Spyrou, P. & Tall, D. (2004). The relationship between physical embodiment and mathematical symbolism: The concept of vector. The Mediterranean Journal of Mathematics Education. 12, 73-97.
  58. Woods, P. (1987). La escuela por dentro. La etnografia en la investigación educativa. Barcelona: Paidós.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.