Artículos
Vol. 11 N.º 3 (2008): Noviembre
ESTUDIO DE LOS ESQUEMAS CONCEPTUALES EPISTEMOLÓGICOS ASOCIADOS A LA EVOLUCIÓN HISTÓRICA DE LA NOCIÓN DE INFINITESIMAL
Universidad Centroccidental Lizandro Alvarado, Barquisimeto,Venezuela
Universidad Simón Bolívar Sartenejas- Edo. Miranda,Venezuela
-
Enviado
-
maio 21, 2024
-
Publicado
-
2008-04-21
Resumo
Este estudo é parte de uma investigação que analisa os processos de conceptualização da noção de infinitesimal em alunos da Licenciatura em Ciências Matemáticas. A investigação surge do interesse pela compreensão dos processos de ensino e aprendizagem de conceitos chave da Análise Matemática como o de limite, número real, continuidade, entre outros. Do ponto de vista da Matemática e da cognição, estas noções são reconhecidas como complexas, já que para a sua conceptualização, se servem das ideias intuitivas dos alunos sobre os infinitesimais. O artigo apresenta a descrição, análise e caracterização dos esquemas conceptuais epistemológicos associados à evolução histórica da noção de infinitesimal. Identificamos sete esquemas conceptuais epistemológicos: o infinitesimal visto como uma razão, como um indivisível, como uma diferença, como um incremento, como uma razão aritmética, como um símbolo e como uma função. Além disso, as ideias, os métodos, as representações e as situações problema que os matemáticos abordaram num certo contexto.
Referências
- Artigue, M. (1989). Epistemologie et Didactique. Cahier de DIDIRENT, 3. IREM. Université Paris VII.
- Artigue, M. (1990). Epistemologie et didactique. Recherches en Didactique des Mathématiques, 10 (2/3), 241-286.
- Artigue, M. (1992). The importance and limits of epistemological work in didactics. Proceedings of the 16th Annual Meeting of the Psychology of Mathematics Education 16, Durham, 3, 195-216.
- Artigue, M. (1995). The role of epistemology in the analysis of teaching/learning relationships in mathematics education. Planary Lecture, CMESG, Proceedings 7-21.
- Bergé, A. y Sessa, C. (2003). Completitud y continuidad revisadas a través de 23 siglos. Aportes a una investigación didáctica. Revista Latinoamericana de Investigación en Matemática Educativa 6(3), 163-197.
- Bliss, J., Monk, M. y Ogborn, J. (1983). Qualitative Data Analysis for Educational Research. Londres: Coom Helm.
- Boyer, C. (2003). Historia de la Matemática. Madrid: Editorial Alianza.
- Brousseau, G. (1983). Les Obstacles épistémologiques et les problemas en Mathématiques. Recherches en Didactique des Mathématiques, 4(2), 164-198.
- Cantoral, R. (2001). Matemática Educativa: Un estudio de la formación social de la analiticidad. México: Grupo Editorial Iberoamérica.
- Cantoral, R. y Farfan, R. (2004). Desarrollo Conceptual del Cálculo. México: Thomson Editores. Cauchy, A. (1821). Tours d'Analyse de l'Ecole Royale Polytechinique. I partie. Analyse Algébrique. Paris: l'Imprimerie Royale. Obtenido en junio 4, 2005, de http://gallica.bnf.fr/
- Chae, S. & Tall, D. (2005). Student's Concept Images for Period Doublings as Embodied Objets in Chaos Theory. Proceedings of the British Society for Research into Learning Mathematics 2, 121-132.
- Chin, E. & Tall. D. (2000). Making, having and compressing formal mathematical concepts. In Nakara, T. & Koyama, M. (Eds.), Proceedings of the 24th International Conference of the
- International Group for the Psychology of Mathematics Education, 2, 177-184.
- Chin, E. & Tall, D. (2001). Developing Formal Mathematical Concepts Over Time. In Marja Van Den Heuvwel-Panhuizen (Ed.), Proceedings of the 25th International Conference of the International Group for the Psychology of Mathematics Educations, 4, 241-248. Utrecth, The Netherlands.
- Cornu, B. (1981). Apprentissage de la notion de limite: modéles spontanés et modéles propres', Actes du Cinquième Colloque du Groupe Internationale PME (pp. 322-326.). Grenoble.
- Cornu, B. (1983). Quelques obstacles á l'apprentissage des notion des limite. Recherches en Didactiqué des Mathématiques 4, 236-268.
- Cornu, B. (1991). Limits. En David. Tall (Ed.), Advanced Mathematical Thinking. 1, 153-166. Boston/London: Kluwer Academic Prés Dordrecht.
- Crespo, C. (2005). Un paseo por el paraíso de cantor: problemas y reflexiones acerca del infinito. En Martinez, G. (Ed.), Acta Latinoamericana de Matemática Educativa, 19, 28-34. México: CLAME.
- Dreyfus, T. (1990). Advanced mathematical thinking. En Nesher, P. & Kilpatrick, J. (Eds.), Mathematics and Cognition, 113-134. Cambridge: Cambridge University Press.
- Dreyfus, T. (1991). Advanced mathematical thinking processes. En Tall, D. (Ed.), Advanced Mathematical Thinking, 3-21. Dordrecht/Boston/London: Kluwer Academic Publishers. Edwards, C. (1979). The Historical Development of the Calculus. New York: Springer-Verlag.
- El Bouaizzaui, H. (1988). Conceptions des eleves et des professeurs á propos de la notion de continuité d'une fonction. Thése Ph. D; non publié, Université Laval.
- Euclides (1994). Elementos V-IX. (Puertas, Mª L., Trad.). Madrid, España: Gredos. (Trabajo original publicado 1482).
- Euler, L. (2000). Introducción al Análisis de los Infinitos. España: SAEM Thales.
- Garbin, S. (2005). ¿Cómo piensan los estudiantes entre 16 y 20 años el infinito? La influencia de los modelos, las representaciones y los lenguajes matemáticos. Revista Latinoamericana de Investigación en Matemática Educativa 8 (2), 169-193.
- Godino, J. D. (2002a). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactique des Mathématiques 22 (2/3), 237-284.
- Godino, J. (2002b). Studying the median: a framework to analyse instructional processes in statistics education. En Phillips, B. (Ed.), ICOTS-6 papers for school teachers. Cape Town: International Association for Statistics Education (CD Rom).
- Godino, J.; Ruiz, F.; Roa, R.; Pareja, J. y Recio, A. (2003). Análisis Didáctico de Recursos Interactivos para la Enseñanza de la Estadística en la Escuela IASE Satellite Conference on Statistics Education and the Internet. Berlin, Germany, 11-12 August, 2003. Obtenido en agosto 26, 2006, de http://www.ugr.es/~jgodino/indice_eos.htm.
- Harel, G.; Selden, A. y Selden, J. (2006). Advanced Mathematical Thinking. Some PME Perspectivas. En Gutiérrez, A y Boero, P. (Eds.), Handbook of Research on the Psychology of Mathematics Education: Past, Present and Future, 147-172. Rotterdam, The Netherlands: Sense Publishers.
- Kleiner, 1. (2001). The Infinitely small and the infinitely large in calculus. Educational Studies in Mathematics 48(2-3), 137-174.
- L'Hospital, G. (1696). Analyse des infiniment petits. Paris: L'Imprimmerie Royale. Obtenido en noviembre 5, 2005, de http://www.math-doc.ujf-grenoble.fr/OEUVRES/
- Pinto, M. & Tall, D. (1999). Students constructions of formal theory: living and extracting meaning. Proceedings of the 23th International Conference of the International Group for the Psychology of Mathematics Educations 2, 41-48. Haifa, Israel.
- Pinto, M. & Tall, D. (2001). Following students' development in a traditional university
- classroom, in Marja Van Den Heuvwel-Panhuizen (Eds.), Proceedings of the 25th International Conference of the International Group for the Psychology of Mathematics Educations 4, 57-64. Utrecth, The Netherlands.
- Przenioslo, M. (2004). Images of the limit of function formed in the course of mathematical studies at the university. Educational Studies in Mathematics 55 (1 y 3), 103-132.
- Przeniosło, M. (2005). Introducing the concept of convergence of a sequence in secondary shoool. Educational Studies in Mathematics 60 (1), 71-93.
- Puertas, M. (1994). Los Elementos de Euclides. Colombia: Gredos.
- Rodríguez, G.; Gil, J. y García E. (1998). Metodologia de la Investigación Cualitativa. Málaga: Ediciones Aljibe.
- Robert, A. (1982). L'Acquisition de la notion de convergente des suites numériques dans l'Enseignement Supérieur. Recherches en Didactique des Mathématiques 3(3), 307-341.
- Ruiz, L. (1998). La noción de función: Análisis Epistemológico y didáctico. Tesis doctoral; no publicada, Universidad de Jaen, España.
- Sastré, P., Boubée, C., Rey, Maldonado, S. y Villacampa, Y. (2006). Evolución histórica de las metáforas en el concepto de función. Acta Latinoamericana de Matemática Educativa 19, 22-27. México: CLAME.
- Sierpinska, A. (1985). La notion d'obstacle épistémologique dans l'enseignement des mathématiques. Actes de la 37e Rencontre CIEAEM, 73-95. Leiden.
- Sierpinska, A. (1987a). Obstacles épistémologique relatifs à la notion de limite. Recherches en Didactiqué des Mathématiques, 6(1), 5-67.
- Sierpinska, A. (1987b). Trying to overcome epistemological obstacles relative to limits. In 17 year old Humanities Students Proceedings of the 38th Cieaem's Meeting. 183-193. Southampton.
- Sierpinska, A. (1992). Understanding the notion of function. En G. Harel y E. Dubinsky (Eds.), The concept function. Aspect Epistemology and pedagogy, 25-58. USA: Mathematical Association of America,
- Stake, R. (1983). La evaluación de programas; en especial la evaluación de réplica. En W.B. Dockrell y Hamilton (Eds.), Nuevas Reflexiones sobre la Investigación Educativa. Madrid: Nancea.
- Stromholm, P. (1968). Fermat's methods of maxima and minima and tangents. A recoconstruction. Arch His Sci. 5, 47-69.
- Tall, D. (2005). The transition form embodied thought experiment and symbolic manipulation to formal proof. Proceedings of the Delta Conference of the International Group for the Psychology of Mathematics Education, 1-16. Frazer, Island, Australia.
- Tall, D. (2004). Thinking Through Three Worlds of Mathematics. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 1-16. Bergen, Norway.
- Tall, D. (2001). Natural and formal infinities. Educational Studies en Mathematics, 48 (2 y 3), 200-238.
- Tall, D. (1995). Cognitive growth in elementary and advanced mathematical thinkhing. Proceedings of the 19th International Conference of the International Group for the Psychology of Mathematics Educations, 61-75. Recife, Brasil.
- Tall, D. (1992). The transition to advanced mathematical thinking functions, limits, infinity, and proof. En Grouws, D. (Ed.), Handbook of Research on Mathematics Teaching and Learning, 495-511. Reston, Va: National Council Of Teachers Of Mathematics, Inc.
- Tall, D. (1991). The psychology of advanced mathematical thinking. En Tall, D. (Ed.), Advanced Mathematical Thinking, 3-21. Dordrecht/Boston/London: Kluwer Academic Publishers.
- Tall, D. & Vinner, S. (1981). Concept image and concept definition in mathematics, whit particular reference to limits and continuity. Educational Studies in Mathematics 12, 151-169.
- Vallejo, J. (1819). Compendio de Matemáticas Puras y Mixtas. Madrid: Garrasayaza.
- Vinner (1983). Concept definition, concept image and notion of function. International Journal of Mathematical in Sciencie and Technology, 20, 293-305.
- Watson, A. & Tall, D. (2002). Embodied action, effect and symbol in mathematical growth. Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, 4, 369-376. Norwich, UK.
- Watson, A., Spyrou, P. & Tall, D. (2004). The relationship between physical embodiment and mathematical symbolism: The concept of vector. The Mediterranean Journal of Mathematics Education. 12, 73-97.
- Woods, P. (1987). La escuela por dentro. La etnografia en la investigación educativa. Barcelona: Paidós.
Downloads
Não há dados estatísticos.