Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 10 No. 1 (2007): Marzo

HERRAMIENTA METODOLÓGICA PARA EL ANÁLISIS DE LOS CONCEPTOS MATEMÁTICOS EN EL EJERCICIO DE LA INGENIERÍA

Submitted
September 8, 2024
Published
2007-03-31

Abstract

This research stems from an interest in observing the role that mathematical concepts play in carrying out engineering projects. In order to perform a systematic analysis, we propose a methodology to observe and realize phenomena that are produced when mathematical concepts are used in carrying out these projects. The methodology employed is related to the theoretical framework of theoretical and practical modes of thinking. By using this methodology we have analyzed four engineering projects within the context of four master' s theses in Systems Engineering. These theses were produced in the same institution, but they concern different problems related to real situations. In this article we present the analysis of on of these theses, which allow us to illustrate the phenomena that we observed by means of the methodological tool that we designed.

References

  1. Camarena, P. (2001). La matemática en el contexto de las ciencias. Antologias 11. 149-169.
  2. Camarena, P. (1999). Las funciones generalizadas en ingenieria, construcción de una altemativa didáctica. Tesis de doctorado no publicada, Cinvestav, México. Chevallard, Y. (1985). La transposition didactique. Du savoir savant au savoir enseig né. Grenoble, France: La Pensée Sauvage.
  3. Hurtado, R. (2001). Optimización de la molienda de empacadores permanentes en las operaciones de reparación de pozos petroleros. Tesis de maestria no publicada, SEPI-ESIME, México.
  4. Kent, P. & Noss, R. (2002). The mathematical components of engineering expertise The relationship between doing and understanding mathematics. Conferencia presen- tada en IEE Second Annual Symposium on Engineering Education. London, UK. Obtenido de http://k1.ioe.ac.uk/rnoss/MCEE/Kent-Noss-EE2002-preprint.pdf.
  5. Kent, P. & Noss, R. (2001). Investigating the mathematical components of enginee- ring expertise. Obtenido de http://k1.ioe.ac.uk/rnoss/MCEE/MCEE-poster-for- PME25.pdf.
  6. Lagunes, J. (1999). Modelación de sistemas de producción mediante redes de Petri. Tesis de maestría no publicada, SEPI-ESIME, México.
  7. Martinez, C. (2002). Diseño y simulación de una red neuronal aplicada al problema de distribución óptima de planta. Tesis de maestría no publicada, SEPI-ESIME, México.
  8. Molina, A. (1999). Problemática actual en la enseñanza de la ingeniería: una alterna- tiva para su solución. Ingenierías 2(3), 10-15.
  9. Rugarcia, A., Felder, R., Woods, D. & Stice, J. (2000). The future of engineering edu- cation. A vision for a new century. Chemical Engineering Education 34(1), 16-25.
  10. Sierpinska, A., Nnadozie, A. & Oktaç, A. (2002). A study of relationships between theoretical thinking and high achievement in Linear Algebra. Reporte de investiga- ción, Universidad de Concordia, Canadá. Obtenido de http://alcor.concordia.ca/~sierp/downloadpapers.html.
  11. Sierpinska, A. (1994). Understanding in mathematics. London, UK: The Falmer Press Ltd.
  12. Trueba, B. (2002). Método numérico para el sistema m/g(0,c)/1 con distribución uni- forme en tiempo de servicio. Tesis de maestría no publicada, SEPI-ESIME, México.

Downloads

Download data is not yet available.

Similar Articles

<< < 21 22 23 24 25 26 

You may also start an advanced similarity search for this article.