Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículos

Vol. 9 No 3 (2006): Noviembre

TRANFORMACIONES LINEALES EN UN AMBIENTE DE GEOMETRIA DINAMICA

Soumis
septembre 12, 2024
Publiée
2006-11-30

Résumé

Cet article reporte la présence ou l’absence d’une pensée systémique chez les étudiants, au moment de résoudre le problème d’extension linéale, qui consiste à déterminer une transformation linéale à travers les images des vecteurs d’une base. Ce problème se pose géométriquement, en faisant usage des outils du software Cabri-géomètre II. Les difficultés que présentent les étudiants quand ils font face à ce problème peuvent trouver leur origine au fait que les étudiants ne font pas les connections adéquates entre les concepts impliqués. Ce phénomène peut s’étudier depuis le point de vue de l’approximation théorique la pensée théorique versus la pensée pratique (Sierpinska, 2000). Une des caractéristiques de la pensée théorique est qu’elle essaye de se concentrer dans l’établissement et dans l’étude des relations entre les concepts et leurs caractérisation a l’intérieur d’’un système qui contient aussi d’autres concepts (Sierpinska, et al. 2002).

Références

  1. Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. En Kaput, A. H. Schoenfeld & E, Dubinsky (Eds.), Research in collegiate mathematics education (pp. 1-32). Providence, RI: American Mathematical Society.
  2. Dorier, J-L. (1997). Exemples d'interaction entre recherches en didactique et en histoire des mathématiques à propos de l'enseignement de l'algèbre linéaire. Fascicule de Didactique des Mathématiques et de l'EIAO (pp. 53-74). Rennes, France: IREM de Rennes.
  3. Dorier, J-L., Robert, A., Robinet, J. et Rogalski, M. (1997). L'algèbre linéaire. l'obstacle du formalisme à travers diverses recherches de 1987 a 1995. En J-L. Dorier (Ed.), L'enseignement de l'algèbre linéaire en question (pp. 105-147). Grenoble, France. La Pensée Sauvage Editions.
  4. Dreyfus, T., Hillel, J. & Sierpinska, A. (1998). Cabri-based linear algebra: transformations. Artículo presentado en CERME-1 (First Conference on European Research in Mathematics Education, Osnabrück). Obtenido de http://www.fmd.uni-osnabrueck.de/ebooks/erme/cerme1-proceedings/papers/g2-dreyfus-et-al.pdf.
  5. Haddad, M. (1999). Difficulties in the learning and teaching of linear algebra. A personal experience. Tesis de maestría, Concordia University, Montreal, Canadá.
  6. Molina, G. (2004). Las concepciones que los estudiantes tienen sobre la transformación lineal en contexto geométrico. Tesis de maestría, Cinvestav, México.
  7. Resnick, L. B. (1987). Education and learning to think. USA: Washington, DC: National Academy Press.
  8. Robert, A. y Robinet, J. (1989). Quelques résultats sur l'apprentissage de l'algèbre linéaire en première année de DEUG. Paris, France: IREM de Paris VII, Cahier de Didactique des Mathématiques 53.
  9. Rogalski, M. (1990). Pourquoi un tel échec de lénseignement de l'algèbre linéaire? In Enseigner autrement les mathématiques en DEUG Première Année (pp. 279-291). Paris, France: Commission Inter-IREM Université.
  10. Sierpinska, A. (2000). On some aspects of students thinking in linear algebra. En J-L. Dorier (Ed.), On the Teaching of Linear Algebra (pp. 209-246). Dortrecht/Boston London: Kluwer Academic Publishers.
  11. Sierpinska, A., Dreyfus, T. & Hillel, J. (1999). Evaluation of a teaching design in linear algebra: the case of linear transformations. Recherches en Didactique des Mathématiques 19 (1), 7-40.
  12. Sierpinska, A., Hillel, J. & Dreyfus, T. (1998). Evaluation of a teaching design in linear algebra: the case of vectors (Technical Report). Montreal, Canada: Concordia University.
  13. Sierpinska, A., Nnadozie, A. & Oktaç, A. (2002). A study of relationships between theoretical thinking and high achievement in linear algebra (Research Report). Montreal, Canadá: Concordia University.
  14. Soto, J. L. (2003). Un estudio sobre las dificultades para la conversión gráfico-algebraica relacionadas con los conceptos básicos de la teoría de espacios vectoriales en R2 y R3. Tesis de doctorado, Cinvestav, México.
  15. Steinbring, H. (1991). Mathematics in teaching processes. The disparity between teacher and student knowledge. Recherches en Didactique des Mathématiques 11 (1), 65-108.
  16. Trgalová, J. et Hillel, J. (1998). Une ingénierie didactique à propos de notios de base de l'algèbre linéaire intégrant l'outil informatique: Cabri-Géomètre II. In Actes du Colloque du Groupe de Didactique des Mathématiques du Québec (pp. 138-149). Montreal, Canada.
  17. Vigotsky, L. S. (1987). The collected works of L. S. Vigotsky (Vol. 1, Problems of General Psichology. Including the volume Thinking and Speech). New York & London: Plenum Press.
  18. Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematics Education in Science and Technology 14, 239-305.
  19. Zazkis, R. (2001). Múltiplos, divisores y factores: explorando la red de conexiones de los estudiantes. Revista Latinoamericana de Investigación en Matemática Educativa 4 (1), 63-92.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.