Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículos

Vol. 27 No 1 (2024): Marzo

USO DE UM ARTEFATO COMPUTACIONAL PARA EXPLORAR A COVARIAÇÃO: UM ESTUDO DAS GÊNESES INSTRUMENTAIS DE LICENCIANDOS EM MATEMÁTICA

DOI
https://doi.org/10.12802/relime.24.2714
Soumis
janvier 31, 2025
Publiée
2024-03-31

Résumé

Cet article présente les résultats mis en évidence d’une étude qui a examiné les effets de l’utilisation d’un artefact informatique sur le raisonnement covariationnel des étudiants et sa relation avec la transposition informatique du concept de covariation dans cet artefact. La méthodologie consistait en une étude de cas multiples sur la genèse instrumentale des enseignants de mathématiques en formation initiale en situation de covariation avec GeoGebra. L’utilisation instrumentée d’outils d’aide à la quantification de la variation articulée dynamiquement avec des représentations de la fonction a contribué à une interprétation covariationnelle du graphique et à la coordination de la covariation continue. D’autre part, des restrictions ont été liées à la representation de la variation par segments dynamiques dans des situations de variation négative et à l’influence de schémas basés sur une vision de la fonction comme correspondance et sur une visión statique du graphique.

Références

  1. Aranda, C., & Callejo, M. L. (2017) Construcción de la función integral y razonamiento covariacional: dos estudios de casos. Bolema, 31(58), 777-798. https://doi.org/10.1590/1980-4415v31n58a13
  2. Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. The International Journal of Computers for Mathematics Learning, 7, 245-274. https://doi.org/10.1023/A:1022103903080.
  3. Balacheff, N. (1993). La transposition informatique, un nouveau problème pour la didactique. En M. Artigue, R. Gras, C. Laborde, P. Tavignot, & N. Balacheff (Eds.). Vingt ans de Didactique des Mathématiques en France (pp. 364-370). La Pensée Sauvage.
  4. Balacheff, N. (1994). Didactique et intelligence artificielle. Recherches en Didactique des Mathématiques, 14, 9-42. https://telearn.hal.science/hal-00190648
  5. Carlson, M., Sally Jacobs, Coe, E., Sean Larsen, & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: a framework and a study. Journal for Research in Mathematics Education, 33(5), 352–378. https://doi.org/10.2307/4149958
  6. Castillo-Garsow, C. C. (2012). Continuous quantitative reasoning. In R. Mayes, R. Bonillia, L. L. Hatfield & S. Belbase (Eds.), Quantitative reasoning: Current state of understanding. (Vol. 2, pp. 55–73). University of Wyoming. https://wilkins.math.ksu.edu/~bennett/onlinehw/qcenter/2012cqr.pdf
  7. Clement, J. (2000) Analysis of clinical interviews: foundations and model viability. In Lesh, R. & Kelly, A. Handbook of research methodologies for science and mathematics education (pp. 341-385). Lawrence Erlbaum.
  8. Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26(2-3), 135–164. https://doi.org/10.1007/bf012 73661
  9. Ellis, A. B., Ozgur, Z., Kulow, T., Dogan, M. F., & Amidon, J. (2016). An exponential growth learning trajectory: students’ emerging understanding of exponential growth through covariation. Mathematical Thinking and Learning, 18(3), 151–181. https://doi.org/10.1080/10986065.2016.1183090
  10. Giraldo, V., Carvalho, L. M., & Tall, D. (2002). Conflitos teórico-computacionais e a formação da imagem conceitual de derivada. In L. M. Carvalho & L. C. Guimarães (Eds.), História e Tecnologia no Ensino da Matemática. (Vol. 1, pp. 153-164). http://www.warwick.ac.uk/staff/David.Tall/pdfs/dot2003b-giraldo-carv-rj.pdf
  11. Gitirana, V., & Lucena, R. (2021). Orquestração instrumental on-line. Educação Matemática Pesquisa: Revista Do Programa de Estudos Pós-Graduados Em Educação Matemática, 23(3), 362–398. https://doi.org/10.23925/1983-3156.2021v23i3p362-398
  12. Goldin, G. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of Research Design in Mathematics and Science Education (pp. 517-545). Taylor & Francis Group.
  13. Johnson, H. L., & McClintock, E. (2018). A link between students’ discernment of variation in unidirectional change and their use of quantitative variational reasoning. Educational Studies in Mathematics, 97(3), 299–316. https://doi.org/10.1007/s10649-017-9799-7
  14. Kujala, S., & Mäntylä, M. (2000). Studying users for developing usable and useful products. In Proceedings of 1st Nordic Conference on Computer-Human Interaction. https://www.nordichi.net/Proceedings2000/Papers/06Study.pdf
  15. Lagrange, J-B. (2014) A functional perspective on the teaching of algebra: current challenges and the contribution of technology. The International Journal For Technology in Mathematics Education. https://hal.archives-ouvertes.fr/hal-01740456.
  16. Lagrange, J., & Psycharis, G. (2014) Investigating the potential of computer environments for the teaching and learning of functions: a double analysis from two research traditions. Technology, Knowledge and Learning, 19, 255–286 https://doi.org/10.1007/s10758-013-9211-3.
  17. Lima, E. L., Carvalho, P. C. P., Wagner, E., & Morgado, A. C. (2005). A Matemática do Ensino Médio. (8ª ed., Vol. 1). SBM.
  18. Malik, M. A. (1980) Historical and pedagogical aspects of the definition of function, International Journal of Mathematical Education in Science and Technology, 11, (4), 489-492. https://www.tandfonline.com/doi/abs/10.10 80/0020739800110404
  19. Meira, L. (1994) Análise microgenética e videografia: ferramentas de pesquisa em psicología cognitiva. Temas psicológicos, 2(3), 59-71. http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1413-389X1994000300007&lng=pt&nrm=iso
  20. Moore, K. C. (2014) Quantitative reasoning and the sine function: the case of Zac. Journal for Research in Mathematics Education, 45(1), 102-138. https://doi.org/10.5951/jresematheduc.45.1.0102
  21. Moore, K. C., & Thompson, P. W. (2015) Shape thinking and students’ graphing activity. In Proceedings of the 18th Meeting of the MAA Special Interest Group on Research in Undergraduate Mathematics Education. (pp. 782-789). https://pat-thompson.net/PDFversions/2015MooreShapeThinking.pdf
  22. Ndlovu, M., Wessels, D., & De Villiers, M. (2011) An instrumental approach to modelling the derivative in Sketchpad. Pythagoras, 32(2), 1-15. http://dx.doi.org/10.4102/pythagoras.v32 i2.52
  23. Rabardel, P. (1995) Les hommes et les technologies : Approche cognitive des instruments contemporains. Armand Colin
  24. Silva, C. T. J. (2022). O uso de um artefato computacional como suporte ao raciocínio covariacional em função (Tese de Doutorado). Universidade Federal de Pernambuco, Recife, Brasil.
  25. Silva, C. T. J., & Gitirana, V. (2023). Abordagem covariacional de função: aspectos do ensino, aprendizagem e possibilidades das tecnologias digitais. Zetetike, 31, e023026–e023026. https://doi.org/10.20396/zet.v31i00.8664258
  26. Thompson, P. W. (1994) Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics , 26, 229-274. https://doi.org/10.1007/BF01273664
  27. Thompson, P. W., Hatfield, N., Yoon, H., Joshua, S., & Byerley, C. (2017) Covariational reasoning among U.S. and South Korean secondary mathematics teachers. The Journal of Mathematical Behavior, 48, 95-111. https://doi.org/10.1016/j.jmathb.2017.08.001.
  28. Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 421-456). National Council of Teachers of Mathematics. https://patthompson.net/PDFversions/2016ThompsonCarlsonCovariation.pdf
  29. Trouche, L. (2005). Construction et conduite des instruments dans les apprentissages mathématiques: nécessité des orchestrations. Recherches en didactique des Mathématiques. 25 (1), 91-138. https://revue-rdm.com/2005/construction-et-conduite-des-instruments-dansles-apprentissages-mathem atiques-necessite-des-orchestrations/
  30. Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52, 83-94. https://doi.org/10.1159/000202727.
  31. Yin, R. K. (2015). Estudo de caso: planejamento e métodos. (5ª ed). Bookman.
  32. Zengin, Y. (2018) Examination of the constructed dynamic bridge between the concepts of differential and derivative with the integration of GeoGebra and the ACODESA method. Educational Studies in Mathematics, 99, 311–333. https://doi.org/10.1007/s10649-018-9832-5.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.