Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículo Especial

Vol. 17 Núm. 4(I) (2014): Diciembre

ESTRUCTURA Y NIVELES DE HABILIDAD EN ESTUDIANTES DE ESCUELA PRIMARIA SOBRE GEOMETRÍA TRANSFORMACIONAL

Enviado
julio 5, 2023
Publicado
2014-12-30

Resumen

Este trabajo utilizó análisis factorial confirmatorio para investigar los factores y la estructura de la habilidad para los conceptos de geometría transformacional. Los resultados sugieren que las tres transformaciones geométricas (traslación, reflexión, rotación) consisten de cuatro factores y tienen estructuras similares. Se utilizó el análisis de RASCH para crear una escala de los ítems de factores, la cual se interpretó a la luz del marco teórico del espacio de trabajo geométrico. Se identificaron cinco niveles de habilidades de visualización en la geometría transformacional. Este trabajo sugiere que el desarrollo de la comprensión en la geometría transformacional puede explicarse con base en el proceso de visualización del espacio de trabajo geométrico personal de los estudiantes.

Citas

  1. Bulf, C. (2009). Analyses en termes d’espaces de travail géométrique sur l’enseignement français de la symétrie en début de college. In A. Gagatsis, A. Kuzniak, E. Deliyianni & L. Vivier (Eds.) Research in Mathematics Education (pp. 51-70), Nicosia: University of Cyprus.
  2. Duval, R. (1995). Geometrical Pictures: Kinds of Representation and Specific Processes. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematical education (pp. 142- 157). Berlin: Springer.
  3. Duval, R. (2005). Les conditions cognitives de lápprentissage de la géométrie. Annales de Didactique et des sciences cognitive, 10, 5-54.
  4. Duval, R., (2011). Why figures cannot help students to see and understand in geometry? Analysis of the role and the cognitive functioning of visualization. Symposium Mathematics Education Research at the University of Cyprus and Tel Aviv University (pp. 22-23). Nicosia: Cyprus.
  5. Edwards, L. (2003). The nature of mathematics as viewed from cognitive science. Proceedings of the 3rd Conference of the European Society for Research in Mathematics Education. Bellaria, Italy.
  6. Gagatsis, A., Deliyianni, E., Elia, I., & Panaoura, A. (2011). Explorer la flexibilité: le cas du domaine numérique. Annales de Didactique et de Sciences Cognitives, 16, 25 – 44.
  7. Hollebrands, K. (2003). High school students’ understandings of geometric transformations in the context of a technological environment. Journal of Mathematical Behavior, 22 (1), 55-72.
  8. Houdement, C. & Kuzniak, A. (1999). Un exemple de cadre conceptuel pour l’étude de l’enseignement de la géométrie en formation des maîtres, Educational Studies in Mathematics 40 (3), 283-312.
  9. Kidder, R. (1976). Elementary and middle school children’s comprehension of Euclidean transformations. Journal for Research in Mathematics Education, 7 (1), 40-52.
  10. Kirby, J. R., & Boulter, D. R. (1999). Spatial ability and transformational geometry. European Journal of Psychology of Education, 14, 283-294. doi:10.1007/BF03172970
  11. Kuzniak, A. (2006). Paradigmes et espaces de travail géométriques. Canadian Journal of Science and Mathematics, 6 (2), 167–187.
  12. Kuzniak, A. (2011). The mathematical work space and its genesis. Annales de didactique et de sciences cognitives, 16, 9-24.
  13. Kuzniak, A. (2012). Understanding the Nature of the Geometric Work Through its Development and its Transformations. Proceedings of the 12th International Congress on Mathematical Education. Seoul, Korea.
  14. Kuzniak, A. & Rauscher, J. C. (2011). How do teachers’ approaches to geometric work relate to geometry students’ learning difficulties? Educational Studies in Mathematics, 77 (1), 129–147.
  15. Molina, D. (1990). The applicability of the van Hiele theory to transformational geometry (Unpublished doctoral dissertation). Dissertation Abstracts Online, 417A.
  16. Moyer, J. (1978). The Relationship between the Mathematical Structure of Euclidean Transformations and the Spontaneously Developed Cognitive Structures of Young Children. Journal for Research in Mathematics Education, 9, 83-92.
  17. Muthén, L., & Muthén, B. (2004). Mplus User’s Guide. Third Edition. Los Angeles, CA: Muthén & Muthén.
  18. National Council of Teachers of Mathematics (2002). Principles and standards for school mathematics. Reston, VA: NCTM.
  19. Schultz, K. & Austin, J. (1983). Directional Effects in Transformation Tasks. Journal for Research in Mathematics Education, 14 (2), 95-101.
  20. Soon, Y. P. (1989). An investigation on van Hiele - like levels of learning transformation geometry of secondary school students in Singapore (Unpublished doctoral dissertation). Dissertation Abstracts Online, 619A.
  21. Yanik, H. & Flores, A. (2009). Understanding of rigid geometric transformations: Jeff’s learning path for translation. Journal of Mathematical Behavior, 28 (1), 41-57

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 8 9 10 11 12 13 

También puede {advancedSearchLink} para este artículo.