Special Article
Vol. 17 No. 4(II) (2014): Diciembre
TRAVAIL MATHÉMATIQUE ET DOMAINES MATHÉMATIQUES
Laboratoire de Didactique André Revuz, Université Paris - Diderot
Abstract
In the Geometrical Working Space (GWS) theoretical framework, the differentiation of geometrical approaches is based on the geometrical paradigms notion. Due to this notion, it is possible not only to point out the epistemological differences in the test approaches, but also to understand and explain variations in the instrumental and figural geneses. The extension of the GWS’s theoretical framework to the Mathematical Working Spaces draws attention on the simultaneous use of several domains of mathematics in the mathematical work. We analyze the problems initially lying on a geometrical support, but which solution can be expressed in another mathematical domain that, form a educational point of view, is not, thus, necessarily situated neither to the same paradigmatic level, nor to the same didactical or pedagogical level of elaboration. These differences in level can be source of misunderstandings and dysfunction in the academic practice.
References
- Adjiage, R. & Pluvinage, F. (2007). An Experiment in Teaching Ratio and Proportion. Educational Studies in Mathematics, 65, pp. 149-175.
- Artigue, M., Cazes, C. & Vandebrouck, F. (2011). The shop sign family: a project for supporting teachers’ use of ICT. Poster at Cerme 7. University of Rzeszow.
- Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en didactique des mathématiques, 19 (2), pp. 221-265.
- Coutat, S. & Richard, P. R. (2011). Les figures dynamiques dans un espace de travail mathématique pour l'apprentissage des propriétés géométriques. Annales de didactique et de sciences cognitives, 16, pp. 97-126.
- Douady, R. (1986). Jeux de cadres et dialectique outil - objet. Recherches en Didactique des mathématiques, 7 (2), pp. 7-31.
- Duval, R. (1996). Quel cognitif retenir en Didactique des mathématiques ? Annales de Didactique et de sciences cognitives, 16 (3), pp. 349-382.
- Falcade, R. & Mariotti, M. A. (2011). L'évolution des signes dans le processus de médiation sémiotique. Actes de l'école d'été de didactique des mathématiques.
- Guilbaud, G. Th. (1985). Leçons d'à peu-près. Paris, France: Christian Bourgois.
- Houdement, C. & Kuzniak, A. (1999). Un exemple de cadre conceptuel pour l'étude de l'enseignement de la géométrie en formation des maîtres. Educational studies in Mathematics, 40, pp. 283-312.
- Kuzniak, A. (2010). Un essai sur la nature du travail géométrique en fin de la scolarité obligatoire en France, Annales de didactique et de sciences cognitives, 16, pp. 9-24.
- Kuzniak, A. & Richard, P. R. (2014). Spaces for Mathematical Work: Viewpoints and perspectives. Revista Latinoamericana de Investigación en Matemática Educativa, 17 (Número Especial TOMO I), pp. 17-27.
- Kuzniak, A. & Rauscher, J. C. (2011). How do Teachers’ Approaches on Geometrical Work relate to Geometry Students Learning Difficulties?. Educational studies in Mathematics, 77 (1). pp. 129-147.
- Kuzniak, A. & Richard, P. R. (2014). Espaces de Travail Mathématiques. Points de vue et perspectives. Revista Latinoamericana de Investigación en Matemática Educativa, 17 (Número Especial TOMO I), pp. 29-39.
- Kuzniak, A, Parzysz, B. & Vivier, L. (2013). Trajectory of a Problem: A study in Teacher Training. The Mathematics Enthusiast, 10 (1, 2), pp. 407-440.
- Parzysz, B. (1988). Knowing vs Seeing. Problems of the Plane Representation of Space Geometry Figures. Educational Studies in Mathematics, 19, pp. 79-92.
- Vandebrouck, F. (2011). Perspectives et domaines de travail pour l'étude des fonctions. Annales de didactique et de sciences cognitives, 16, pp. 149-186.
Downloads
Download data is not yet available.