Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 8 No. 3 (2005): Noviembre

LAS RAÍCES HISTÓRICAS DEL PROGRAMA ETNOMATEMÁTICAS.

Submitted
December 4, 2024
Published
2005-11-30

Abstract

This paper is designed to serve as an introduction and historical background to ethnomathematics as a program of study. The authors wants to show that ethnomathematics includes the mathematical ideas, perspectives and practices of individuals in different cultures as manifested and transmitted in diverse modes. Any study of the history of ethnomathematics and its proponents helps us to clarify the importance of this perspective in terms of mathematics education. The development of ethnomathematics is documented here, principally as a part of the study of the development of scientific and mathematical ideas and practices made by distinct cultural groups.

References

  1. Ascher, M. & Ascher, R. (1997). Ethnomathematics. Em Powell, A. B. & Frankenstein, M. (Eds.), Ethnomathematics: Challenging eurocentrism n mathematics education. New York, NY: State University of New York Press. 25 – 50.
  2. Cajori, F. (1993). A history of mathematical notations: two volumes bound as one. New York, NY: Dover Publications, INC.
  3. D’Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics.
  4. For the Learning of Mathematics, 5(1). 44 - 48.
  5. D’Ambrosio, U. (1990). Etnomatemática. São Paulo, SP, Brasil: Editora Ática.
  6. D’Ambrosio, U. (1993). Etnomatemática: um programa. A Educação Matemática em Revista, 1(1). Blumenau, SC, Brasil: SBEM. 5 - 11.
  7. D’Ambrosio, U. (2001). Etnomatemática: Elo entre as tradições e a modernidade. Belo Horizonte, MG, Brasil: Autêntica.
  8. D’Ambrosio, U. (2002). Alustapasivistykselitys or the name ethnomathematics: my personal view. São Paulo, SP, Brasil: Artigo não publicado.
  9. D’Ambrosio, U. (2003). Stakes in Mathematics Education for the Societies of Today and Tomorrow. One Hundred Years of L’Enseignement Mathématique, Moments of Mathematics Education in the Twentieth Century. Proceedings of the EM-ICMI Symposium, Geneva, p. 20 - 22, in Daniel Coray et al (Eds). L’Enseignement Mathématiques, Genève. 302 - 316.
  10. D’Ambrosio, U. (2004). Ethnomathematics: my personal view. São Paulo, SP, Brasil: Artigo não publicado.
  11. Diaz, R. P. (1995). The mathematics of nature: The canamayté quadrivertex. ISGEm Newsletter, Las Cruces, NM. 11(1). 5 - 12.
  12. Ferreira, E. S. (2004). Etnomatemática: Um pouco de sua história. In Morey, B. B. (Ed.). Etnomatemática em Sala de Aula. Natal, RN, Brazil: UFRN. 9 – 20.
  13. Freire, P. (1970). Pedagogia do oprimido. Rio de Janeiro, RJ, Brasil: Editora Paz e Terra.
  14. Freire, P. (1973). Education for critical consciouness. New York. NJ: Seabury.
  15. Gerdes P. (1997). On culture, geometrical thinking and mathematics education. In A. B. Powell & M. Frankenstein (Eds), Ethnomathematics: Challenging Eurocentrism in Mathematics Education. Albany, NY: State University of New York Press. 223 - 247.
  16. Gerdes, P. (2001). Ethnomathematics as a new research field, illustrated by studies of mathematical ideas in African history. In Science and Cultural Diversity: Filing a gap in the history of sciences, Juan Jose Saldaña (Ed.), Cuadernos de Quipu 5, Sociedad Latinoamericana de Historia de las Ciencias y Technologia, México. 10 – 34.
  17. Grattan-Guinness, I. (1997). The rainbow of mathematics: A history of the mathematical sciences. London, England: W.W. Norton & Co.
  18. Joseph, G. C. (1993). A rationale for a multicultural approach to mathematics. In Joseph, G. C., Nelson D. & Williams, J. (Eds.). Multicultural mathematics:Teaching mathematics from a global perspective. Oxford: Oxford University Press. 1 – 24.
  19. Jr. Merick, L. C. (1969). Origin of zero. In National Council of Teacher of Mathematics (Eds.), Historical topics for the mathematics classroom. Washington, DC: NTCM. 49 - 50.
  20. Keyser, C. J. (1922). Mathematical philosophy: A study of fate and freedom. New York, NY: E.P. Dutton & Company.
  21. Kline, M.(1953). Mathematics in western culture. New York, NY: Oxford University Press. Orey, D. C. (2000). The ethnomathematics of Sioux tipi and cone. In Selin, H. (Ed.). Mathematics across cultures: the history of non-western mathematics. Norwell, Netherlands: Kluwer Academic Publicares. 239 - 253.
  22. Orey, D. C. (2004). The algorithm collection project (ACP). Disponível em http://www.csus.edu/indiv/o/oreyd/ACP.htm_files/Alg.html
  23. Orey D. C. e Rosa, M. (2003). Vinho e queijo: Etnomatemática e Modelagem! BOLEMA, 16(20). 1-16.
  24. Orey D. C. e Rosa, M. (2005). Pop: A Study of the Ethnomathematics of Globalization Using the Sacred Mayan Mat Pattern. Capítulo aceito para publicação no livro Internationalization and Globalisation in Mathematics and Science Education, patrocinado por Mathematics Research Group of Australasia (MERGA).
  25. Oweiss, I.M. (1988). Arab civilization. New York, NY: State University of New York Press.
  26. Powell, A. B. e Frankenstein, M. (1997). Ethnomathematics praxis in the curriculum. Em Powell, A. B. e Frankenstein, M (Eds.), Ethnomathematics: Challenging eurocentrism in mathematics education. New York, NY: SUNY. 249 – 259.
  27. Powell, A. B. e Frankenstein, M. (1997). Ethnomathematical knowledge. Em Powell, A. B. & Frankenstein, M (Eds.), Ethnomathematics: Challenging eurocentrism in mathematics education. New York, NY: SUNY. P. 5 – 11.
  28. Rosa, M. (2000). From reality to mathematical modeling: A proposal for using ethnomathematical knowledge. Tese de Mestrado não publicada, California State University, Sacramento, EUA.
  29. Sen, A. (Janeiro, 2002). How to judge globalism. The American Prospect, 13(1). Disponível em: http://www.propsect.org/print/V13/1/sen-a.html
  30. Shirley, L. (2000). Twentieth Century mathematics: A brief review of the century. Teaching Mathematics in the Middle School, 5(5).278 – 285.
  31. Teresi, D. (2002). Lost Discoveries: The ancient roots of modern science – from the Babylonians to the Maya. New York, NY: Simon & Schulster.
  32. Wilder, R. L.(1981). Mathematics as a cultural system. New York, NY: Pergamon Press, Inc.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.