Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 7 No. 3 (2004): Noviembre

LANGUAGE, FRACTIONS AND DISTRIBUTION

Submitted
December 22, 2024
Published
2004-11-30

Abstract

Within the framework of a doctoral research in which the link between the construction of the arithmetic language of the fractions and the development of concepts related to such numbers was explored qualitatively, we applied a questionnaire in a naturally constituted group of fourth grade (integrated by 37 students of 8-11 years old). The mentioned questionnaire was centered in the diverse assignable semantic contents to the fractions. Specifically, the present paper constitutes a partial communication derived from this doctoral research; here, we exclusively talked about the exploration caused by that questionnaire around the quotient meaning, taking care of its character of derived notion from actions and familiar situations for the children and offering for that reason an accessible beginning point for the teaching of fractions. The intention of this research was to identify the semantic, syntactic and “translation” components involved in the answers of the students engaged on distribution situations. In the continuation of such intention, special attention was granted to those components that affected the suitable unfolding of the children and the consequent learning to develop. We considered that all these phenomena are of vital importance for the professors and the corresponding organization of the instructional proposals that they develop.

References

  1. Behr, M., Post, T., Silver, E. y Mierkiewicz, D. (1980). Theoretical Foundations for Instructional Research on Rational Numbers. Proceedings of the International Group for the Psychology of Mathematics Education. 60-67.
  2. Behr, M., Lesh, R., Post, T. y Silver, E. (1983). Rational-number Concepts. En R. Lesh y M. Landau (Eds.), Acquisitions of Mathematics Concepts and Processes. 92-126.
  3. Behr, M. y Post, T. (1988). Teaching Rational Number and Decimal Concepts. En T. Post (Ed.), Teaching Mathematics in Grades K-8. 190-231.
  4. Freudenthal, H, (1983). Didactical Phenomenology of Mathematical Structures. Dordrecht / Boston / Lancaster: D. Reidel. 133-177.
  5. Kieren, T. (1976). On the Mathematical, Cognitive and Instructional Foundations of Rational Numbers. En R. Lesh (Ed.), Number and Measurement: Papers from a Research Workshop. Columbus: ERIC/SMEAC. 101-144.
  6. Kieren, T. (1980). The Rational Number Construct- Its Elements and Mechanisms. En T. Kieren (Ed.), Recent Research on Number Learning. Columbus: ERIC SMEAC. 125-149.
  7. Kieren, T. (1983). Partitioning, Equivalence and the Construction of Rational Number Ideas. Proceedings of the Fourth International Congress on Mathematical Education. 506-508.
  8. Kieren, T. (1984). Mathematical Knowledge Building: The Mathematics Teacher as Consulting Architect. 35th International Congress on Mathematical Education. 187-194.
  9. Kieren, T. E., Nelson, D. y Smith, G. (1985). Graphical Algorithms in Partitioning Tasks. The Journal of Mathematical Behavior, 4. 125-36.
  10. Kieren, T.E. (1988). Personal Knowledge of Rational Numbers: Its Intuitive and Formal Development. En J. Hiebert y M. Behr (Eds.), Number Concepts and Operations in the Middle Grades, 2. 162-181.
  11. Kieren, T.E. (1992). Rational and Fractional Numbers as Mathematical and Personal Knowledge: Implications for Curriculum and Instruction (323-371). En: G. Leinhardt, R. Putnam y R. A. Hattrup (Eds.), Anlysis of Arithmetic for Mathematics Teaching. Hillsdale, N. J., USA: Lawrence Erlbaum.
  12. Kieren, T.E. (1993). Rational and Fractional Numbers: From Quotients Fields to Recursive Understanding (49-84). En: T. Carpenter, E. Fennema y T. Romberg (Eds), Rational Numbers. An Integration of Research. Hillsdale, N. J., USA: Lawrence Erlbaum.
  13. Laborde, C. (1990). Language and Mathematics. En P. Nesher y J. Kilpatrick (Eds.), Mathematics and Cognition: A Research Synthesis by the International Group for the Psychology of Mathematics Education. 53-69.
  14. Lesh, R., Landau, M. y Hamilton, E. (1980). Rational Number Ideas and the Role of Representational Systems. Proceedings of the International Group for the Psychology of Mathematics Education. 50-59.
  15. Lesh, R., Post, T. y Behr, M. (1987). Representations and Translations among Representations in Mathematics Learning and Problem Solving. En C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics. Hillsdade: Lawrence Erlbaum. 33-40.
  16. Métraux, A. (1968). Los Primitivos. Señales y Símbolos. Pictogramas y Protoescritura. En M. Cohen y J. Sainte Fare Garnot (Eds.), La Escritura y la Psicología de los Pueblos. México: Siglo XXI Editores. 1-22.
  17. Nesher, P. (1982). Levels of Description in the Analysis of Addition and Subtraction Word Problems. En T. Carpenter, J. Moser y T. Romberg (Eds.), Addition and Subtraction: A Cognitive Perspective. 25-38.
  18. Ohlsson, S. (1988). Mathematical Meaning and Applicational Meaning in the Semantics of Fractions and Related Concepts. En J. Hiebert y M. Behr (Eds.), Number Concepts and Operations in the Middle Grades, 2. 53-92.
  19. Peralta, T. (1989). Resolución de Operaciones de Suma y Multiplicación de Fracciones, en su Forma Algorítmica y su Representación Gráfica en los Modelos Continuo y Discreto de Fracción de la Unidad. Tesis de Maestría, Matemática Educativa, Cinvestav, México.
  20. Peralta, T. y Valdemoros, M. (1990). Representación Gráfica de la Multiplicación de Fracciones, en los Modelos Continuo y Discreto de Fracción de la Unidad.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.