Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Vol. 7 Núm. 2 (2004): Julio

PROLEGÓMENOS A LAS ETNOMATEMÁTICAS EN MESOAMÉRICA

Enviado
diciembre 22, 2024
Publicado
2004-07-31

Resumen

El propósito de este artículo es identificar las similitudes entre los sistemas numéricos de las culturas olmeca y azteca, considerando los marcos teóricos de las etnomatemáticas y la difusión cultural en Mesoamérica. Para su desarrollo, el texto delinea los límites geográficos de Mesoamérica, plantea una discusión sobre la actividad cultural en dicha región antes de la llegada de los españoles, describe los sistemas numéricos de esas dos culturas precolombinas y sitúa a olmecas y aztecas en el continuo temporal y cultural de aquella zona. Por último, se formulan algunas conclusiones sobre el proceso de difusión cultural en Mesoamérica.

Citas

  1. Ascher, M. (1991). Ethnomathematics: a multicultural view of mathematical ideas. Pacific Grove, California, USA: Brooks/Cole Publishing Company.
  2. Begle, E. G. (1973). Some lessons learned by SMSG. The Mathematics Teacher (march), 207-214.
  3. Bernal, I. (1975). Mexico before Cortes: art, history and legend. Garden City, New York, USA: Anchor Books.
  4. Cajori, F. (1928). The early mathematical sciences in North and South America. La Salle, Illinois, USA: The Open Court Publishing.
  5. Caso, A. (1965). Zapotec writing and calendar. En Handbook of Middle American Indians (Vol. 3, pp. 931-947), Archaelogy of Southern Mesoamerica (part 2). Austin, Texas, USA: University of Texas Press.
  6. Coe, M. D. (1995). Mexico: from the olmecs to the aztecs. New York, USA: Thames and Hudson.
  7. D’Ambrosio, U. (1985a). Sociocultural bases for mathematics education. Campinas, Brazil: UNICAMP.
  8. D’Ambrosio, U. (1985b). Ethnomathematics: what might it be? Newsletter 1 (1), 2.
  9. D’Ambrosio, U. (1985c). Ethnomathematics and its place in the history and pedagogy of mathematics. For the Learning of Mathematics 5 (1), 44-48.
  10. D’Ambrosio, U. (1997). Foreword. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. XVI-XXI). Albany, New York, USA: State University of New York.
  11. D’Ambrosio, U. (1998). Ethnomathematics: The art or technic of explaining and knowing. Las Cruces, New México, USA: ISGEm (traducción del portugués por Patrick Scott).
  12. D’Ambrosio, U. (2001). What is ethnomathematics and how can it help children. Teaching Children Mathematics 7 (6), 308-310.
  13. Eglash, R. (1999). African fractals: modern computing and indigeneous design. New Brunswick, New Jersey, USA: Rutgers University Press.
  14. Fasheh, M. (1997). Mathematics, culture, and authority. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 273-290). Albany, New York, USA: State University of New York.
  15. Ganguli, S. (1932). The indian origin of the modern place-value arithmetical notation. The American Mathematical Monthly 39 (may), 251-256.
  16. Gerdes, P. (1999). Geometry from Africa: mathematical and educational explorations. Washington, DC, USA: The Mathematical Association of America.
  17. Harvey, H. R., & Williams, B. J. (1993). Dechiperment and some implications of aztec numerical glyphs. En Michael P. (ed.), Native American Mathematics (pp. 237-260). Austin, Texas, USA: University of Texas Press.
  18. Joseph, G. G. (1991). The crest of the peacock: non-european roots of mathematics. London, England: Penguin Books.
  19. Joseph, G. G. (1997). Foundations of eurocentrism in mathematics. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 61-82). Albany, New York, USA: State University of New York.
  20. Knijnik, G. (1997). An ethnomathematical approach in mathematics education: a matter of political power. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 403-410). Albany, New York, USA: State University of New York.
  21. Marcus, J. (1993). Mesoamerican writing systems: propaganda, myth and history in four ancient mesoamerican civilizations. Princeton, New Jersey, USA: Princeton University Press.
  22. Martin, B. (1977). Mathematics and social interests. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 155-172). Albany, New York, USA: State University of New York.
  23. Oliveras, M. L. (1996). Etnomatemáticas. Formación de profesores e innovación cultural. Granada, España: Comares.
  24. Ortiz-Franco, L. (1977). Seleted study on mathematical word problem-solving processes. Tesis de doctorado, Stanford University, USA.
  25. Ortiz-Franco, L. (1990). Interrelationship of seven mathematical abilities across languages. Journal of Hispanic Behavioral Sciences 12 (3), 299-312.
  26. Ortiz-Franco, L. (1993). Chicanos have math in their blood: pre-columbian mathematics. Radical Teacher 43, 10-14.
  27. Ortiz-Franco, L. (2002). The aztec number system, algebra, and etnomathematics. En Judith E. Hankes y Gerald R. (Eds.), Changing the faces of mathematics: perspectives on indigenous people of NorthAmerica (pp. 237-250). Fast Reston, Virginia, USA: National Council of Teachers of Mathematics.
  28. Ortiz-Franco, L. & Magaña, M. (1973). La ciencia de los antiguos mexicanos: una bibliografia selecta. Aztlan: Chicano Journal of the Social Sciences and the Arts 4 (1), 195-205.
  29. Payne, E. & Closs, M. P. (1993). A survey of aztec numbers and their uses. En Closs, Michael P. (Ed.), Native American Mathematics (pp. 215-235). Austin, Texas, USA:University of Texas Press.
  30. Sanders, W. T. & Price, B. (1968). Mesoamerica: The evolution of a civilization. New York, USA: Random House.
  31. Schele, L. & Friedel, D. (1990). A forest of kings: the untold story of the ancient maya. New York, USA: William Morrow and Company.
  32. Soustelle, J. (1984). The olmecs: the oldest civilization of Mexico. Garden City, New York, USA: Double Day and Company, Inc (traducción del francés por Helen R. Lane).
  33. Stuart, G. E. (1993). New light on the olmec. National Geographic (pp. 88-115). Washington, DC, USA: National Geographic Society.
  34. Stuart, G. E. & Stuart, G. S. (1983). The mysterious maya. Washington, DC, USA: National Geographic Society.
  35. Vaillant, G. C. (1962). Aztecs of Mexico: origin, rise and fall of the aztec nation. Garden City, New York, USA: Double Day and Company.
  36. Zaslavsky, C. (1973). Africa counts: number and pattern in african culture. Brooklyn, New York, USA: Lawrence Hill Books.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 16 17 18 19 20 21 22 23 24 25 > >> 

También puede {advancedSearchLink} para este artículo.