Special Article
Vol. 17 No. 4(II) (2014): Diciembre
REGISTERS AND STRATA IN MWS TO THE SERVICE OF FUNCTIONAL THINKING
Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (Cinvestav-IPN)
Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (Cinvestav-IPN)
Abstract
In this article we are interested on real functions of a real variable, from the perspective of Mathematical Working Spaces (MWS). In a first part of the study, we point out observations made at various levels of teaching, which may give credit to the hypothesis that knowing algebra is not sufficient for treatments which bring the functions into play. It needs a so called functional thought, that we precise in a second part. In a third part, we present the results of an exploratory workshop aimed for high school mathematics teachers, with the purpose of go deeply into our hypothesis. The specificity of the proposed study was that participants worked in groups, all of them considering the same mathematical situation, but each group using its own tool. Groups, characterized by the tools they used, were the following: “On foot” (paper - pencil), Spreadsheet, Calculator, Symbolic Calculus software, Dynamic Geometry software. Participants realized how the use of technological tools exerts influence on the resolution processes and the management of concepts
References
- Adjiage, R. & Pluvinage, F. (2008). A Numerical Landscape. En Calvin L. Petroselli (Ed.), Science Education Issues and Developments (pp. 5-57). New - York: Nova Publishers.
- Adjiage R. & Pluvinage, F. (2012), Strates de compétence en mathématiques. Repères IREM, 88, 43-72.
- Cuevas Vallejo, C. A., Moreno Guzmán, S. & Pluvinage, F. (2005). Una experiencia de enseñanza del objeto función. Annales de Didactique et de Sciences Cognitives, 10, 177-208.
- Douady, R. (1986). Jeux de cadres et dialectique outil - objet. Recherche en Didactique des Mathématiques, 7 (2), 5-31.
- Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée, Annales de Didactique et de Sciences Cognitives, 5, 37-65.
- Gray, E. & Tall, D. (1994) Duality, Ambiguity, and Flexibility: A “Proceptual” View of Simple Arithmetic. Journal for Research in Mathematics Education, 25 (2), 115-141.
- Houdement, C. & Kuzniak A. (2006). Paradigmes géométriques et enseignement de la géométrie. Annales de Didactique et de Sciences Cognitives, 11, 175-193.
- Kuzniak, A. (2011). L’espace de Travail Mathématique et ses genèses. Annales de didactique et de sciences cognitives, 16 (1), 9-24.
- Moreno Guzmán, S. & Cuevas Vallejo, C. A. (2004). Interpretaciones erróneas sobre los conceptos de máximos y mínimos en el Cálculo Diferencial. Educación Matemática, 16 (2), 93-104.
- Niss, M. A. (2003). Mathematical competencies and the learning of mathematics: the Danish KOM project. En A. Gagatsis, & S. Papastavridis (Eds.), 3rd Mediterranean Conference on Mathematical Education - Athens, Hellas 3-4-5 January 2003. (pp. 116-124). Atenas, Grecia: Hellenic Mathematical Society.
- Pluvinage, F. & Marmolejo Rivas, E. (2012). Une recherche didactique recourant à la modélisation et au travail collaboratif: un cas d’étude de paramètres. En F. Hitt & C. Cortés (Eds.), Formation à la recherche en didactique des mathématiques (pp. 11–24). Montréal, Canada: Loze - Dion éditeur Inc.
Downloads
Download data is not yet available.