Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 7 No. 2 (2004): Julio

GENERATING COGNITIVE CONFLICT BY MEANS OF A CRYPTOGRAPHY ACTIVITY THAT INVOLVES BINARY OPERATIONS

Submitted
December 22, 2024
Published
2004-07-31

Abstract

Causing a cognitive conflict can be one way to make students aware of the inadequacy of the concepts that they possess and the methods that they use in solving a problem. Apart from discussions in a cooperative group and the use of mathematical games, the mathematical situations themselves have to possess certain characteristics to be able to provoke a conflict and furthermore facilitate the confrontation between the previous knowledge and new knowledge to be acquired. Moreover teachers need to have direct experiences at their level with this kind of activities, before they can employ them in their classes. In this paper we report the results of a study in which a cryptography activity was applied with a group of university and high school teachers, where the concepts of sets and binary operations came into play.

References

  1. Aguilar, P. (1999). Entendimiento de las operaciones binarias: ¿Qué puede suceder en un cambio de contexto? Tesis de maestría, Cinvestav, México.
  2. Anton, A. (1994). Elementary linear algebra. USA: John Wiley & Sons, Inc.
  3. Brown, A.; DeVries, D. J.; Dubinsky, E., y Thomas, K. (1997). Learning binary operations, groups and subgroups. Journal of Mathematical Behavior 16 (3), 187-239.
  4. Laborde, C. (1991). Deux usages complémentaires de la dimension sociale dans les situations d'apprentissage en mathématiques. En C. Garnier y N. Bednarz (Eds.), Après Vygotski et Piaget (pp. 29-49). Editions De Boeck.
  5. Lefebvre-Pinard, M. (1989). Le conflit socio-cognitif en psychologie du développement: est-ce toujours un concept heuristiquement valable? En N. Bednarz y C. Garnier (Eds.), Construction des savoirs (pp. 151-156). Montreal, Canadá: Agence d’ARC.
  6. Reynolds, B.; Hagelgans, N.; Schwingendorf, K.; Vidakovic, D.; Dubinsky, E.; Shahin, M., y Wimbish, G. (1995). A practical guide to cooperative learning in collegiate mathematics. MAA Notes, 37.
  7. Sierpinska, A. (2000). On some aspects of students thinking in linear algebra. En J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 209-246). Kluwer Academic Publishers.
  8. Steffe, L. P. (1990). Inconsistencies and cognitive conflict: a constructivist’s view. Focus on Learning Problems in Mathematics 12 (3-4), 99 - 109.
  9. Swan, K. (1983). Teaching decimal place value: a comparative study of “conflict” and “positive only” approaches. En R. Hershkowitz (Ed.), Proceedings of the Seventh International Conference for the Psychology of Mathematics Education (pp. 211-216). Rehovot, Israel: Weizmann Institute of Science.
  10. Underhill, R. (1991). Two layers of constructivist curricular interaction. En E. Von Glasersfeld (Ed.), Radical Constructivism in Mathematics Education (pp. 229-248). Dordrecht, Holland: Kluwer.
  11. Vidakovic, D. (1997). Learning the concept of inverse function in a group versus individual environment. En E. Dubinsky; D. Mathews, y B. Reynolds (Eds.), Readings in Cooperative Learning (pp. 173-195). MAA Notes, 44.
  12. Zaslavsky, O. y Peled, I. (1996). Inhibiting factors in generating examples by mathematics teachers and student teachers: the case of binary operation. Journal for Research in Mathematics Education 27 (1), 67-78.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.