Skip to main navigation menu Skip to main content Skip to site footer

Special Article

Vol. 17 No. 4(I) (2014): Diciembre

PRIMARY SCHOOL STUDENTS’ STRUCTURE AND LEVELS OF ABILITIES IN TRANSFORMATIONAL GEOMETRY

Submitted
July 5, 2023
Published
2014-12-30

Abstract

This paper used CFA analyses to investigate the factors and structure of transformational geometry concepts ability. The results suggest that the three geometric transformations (translation, reflection and rotation) consist of four factors and have similar structures. RASCH analysis was used to create a scale of the factor items, which was interpreted in light of the theoretical framework of geometrical working space. Five levels of visualization abilities in transformational geometry were identified. This paper suggests that the development of understanding in transformational geometry can be explained based on the visualization process of the students’ personal geometrical working space.

References

  1. Bulf, C. (2009). Analyses en termes d’espaces de travail géométrique sur l’enseignement français de la symétrie en début de college. In A. Gagatsis, A. Kuzniak, E. Deliyianni & L. Vivier (Eds.) Research in Mathematics Education (pp. 51-70), Nicosia: University of Cyprus.
  2. Duval, R. (1995). Geometrical Pictures: Kinds of Representation and Specific Processes. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematical education (pp. 142- 157). Berlin: Springer.
  3. Duval, R. (2005). Les conditions cognitives de lápprentissage de la géométrie. Annales de Didactique et des sciences cognitive, 10, 5-54.
  4. Duval, R., (2011). Why figures cannot help students to see and understand in geometry? Analysis of the role and the cognitive functioning of visualization. Symposium Mathematics Education Research at the University of Cyprus and Tel Aviv University (pp. 22-23). Nicosia: Cyprus.
  5. Edwards, L. (2003). The nature of mathematics as viewed from cognitive science. Proceedings of the 3rd Conference of the European Society for Research in Mathematics Education. Bellaria, Italy.
  6. Gagatsis, A., Deliyianni, E., Elia, I., & Panaoura, A. (2011). Explorer la flexibilité: le cas du domaine numérique. Annales de Didactique et de Sciences Cognitives, 16, 25 – 44.
  7. Hollebrands, K. (2003). High school students’ understandings of geometric transformations in the context of a technological environment. Journal of Mathematical Behavior, 22 (1), 55-72.
  8. Houdement, C. & Kuzniak, A. (1999). Un exemple de cadre conceptuel pour l’étude de l’enseignement de la géométrie en formation des maîtres, Educational Studies in Mathematics 40 (3), 283-312.
  9. Kidder, R. (1976). Elementary and middle school children’s comprehension of Euclidean transformations. Journal for Research in Mathematics Education, 7 (1), 40-52.
  10. Kirby, J. R., & Boulter, D. R. (1999). Spatial ability and transformational geometry. European Journal of Psychology of Education, 14, 283-294. doi:10.1007/BF03172970
  11. Kuzniak, A. (2006). Paradigmes et espaces de travail géométriques. Canadian Journal of Science and Mathematics, 6 (2), 167–187.
  12. Kuzniak, A. (2011). The mathematical work space and its genesis. Annales de didactique et de sciences cognitives, 16, 9-24.
  13. Kuzniak, A. (2012). Understanding the Nature of the Geometric Work Through its Development and its Transformations. Proceedings of the 12th International Congress on Mathematical Education. Seoul, Korea.
  14. Kuzniak, A. & Rauscher, J. C. (2011). How do teachers’ approaches to geometric work relate to geometry students’ learning difficulties? Educational Studies in Mathematics, 77 (1), 129–147.
  15. Molina, D. (1990). The applicability of the van Hiele theory to transformational geometry (Unpublished doctoral dissertation). Dissertation Abstracts Online, 417A.
  16. Moyer, J. (1978). The Relationship between the Mathematical Structure of Euclidean Transformations and the Spontaneously Developed Cognitive Structures of Young Children. Journal for Research in Mathematics Education, 9, 83-92.
  17. Muthén, L., & Muthén, B. (2004). Mplus User’s Guide. Third Edition. Los Angeles, CA: Muthén & Muthén.
  18. National Council of Teachers of Mathematics (2002). Principles and standards for school mathematics. Reston, VA: NCTM.
  19. Schultz, K. & Austin, J. (1983). Directional Effects in Transformation Tasks. Journal for Research in Mathematics Education, 14 (2), 95-101.
  20. Soon, Y. P. (1989). An investigation on van Hiele - like levels of learning transformation geometry of secondary school students in Singapore (Unpublished doctoral dissertation). Dissertation Abstracts Online, 619A.
  21. Yanik, H. & Flores, A. (2009). Understanding of rigid geometric transformations: Jeff’s learning path for translation. Journal of Mathematical Behavior, 28 (1), 41-57

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.