­
Múltiplas representações: um contributo para a aprendizagem do conceito de função  
Número 15-2 (Julio)

Multiple representations: a contribution for the learning of the concept of function

Jael Miriam Andrade jael.miriam@gmail.com

Manuel Joaquim Saraiva manuels@ubi.pt
Disponible en: I

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.


Resumen: En este artículo se presenta un estudio centrado en la comprensión del concepto de función por estudiantes de cuarto de E.S.O -Escuela Secundaria Obligatoria. Estudia las conexiones que los estudiantes establecen entre las diversas representaciones de una función, movilizando e interconectando sus conceptos definición e imagen de una función, siempre que hacen tareas de resolución de problemas, exploratorias e investigativas, y utilizando la calculadora gráfica, mediados por el profesor. Aún estudia la importancia de las representaciones múltiples para el desarrollo del aprendizaje del concepto de función. Pretende también identificar y comprender las dificultades que los estudiantes manifiestan en el aprendizaje de las funciones, conociendo mejor las conexiones hechas por ellos entre las diversas representaciones de las funciones consideradas. Sigue la teoría definida por Duval (registro de representación semiótica) y la teoría cognitivista de Vinner (concepto imagen y concepto definición). Los estudiantes trabajaron en clases de Matemáticas en un ambiente de resolución de problemas, de tareas exploratorias e investigativas, usando la calculadora gráfica. La metodología de investigación adoptada es de tipo cualitativo e interpretativo. La recolección de los datos incluyó un cuestionario inicial, informes escritos por los estudiantes en las clases a lo largo de la unidad didáctica ''Funciones'' y una entrevista a una pareja de estudiantes al final de la enseñanza de la respectiva unidad. Los resultados indican que la coordinación que los estudiantes hacen entre los diversos registros de representación de una función y de diferentes funciones, les permite lograr diferentes perspectivas de una función. La paradoja cognitiva de la comprensión matemática fue destacada por esas estudiantes, a través de la coordinación'que hicieron de los registros de representaciones semióticas (lenguaje natural, algebraico, tablas y gráficos), que les permitió dejar de confundir el objeto matemático función con su representación y, aún, lograr una fuerte convergencia del concepto imagen al concepto definición de función.
Palabras clave: Concepto de función, Representación semiótica de una función, Conexiones entre las representaciones, Concepto imagen de una función, Concepto definición de una función.

Licencia Creative Commons

 

Todos los artículos publicados en Relime están bajo la

 Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.

 

 

24 volúmenes, 72 números regulares, 3 números especiales y 415 artículos en total

 

esenfrdeitptru

REVISTA LATINOAMERICANA DE INVESTIGACIÓN EN MATEMÁTICA EDUCATIVA – RELIME,

es la publicación de investigación oficial del Comité Latinoamericano de Matemática Educativa A. C. Editada por el Colegio Mexicano de Matemática Educativa, A.C., en Av. Instituto Politécnico Nacional # 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360. Reservas de Derechos al Uso Exclusivo, No. 04-2016-110914351000-102, con ISSN: 1665-2436, para el formato impreso; y No. 04-2016-110413025500-203, con e-ISSN: 2007-6819, para el formato digital; otorgados por el Instituto Nacional del Derecho de Autor. Derechos Reservados © Colegio Mexicano de Matemática Educativa, A.C. RFC: CMM 040 505 IC7. Publicación cuatrimestral. Se publica en los meses de marzo, julio y noviembre, con el financiamiento del Clame. 

 

Impresa por Editorial Progreso, S.A. de C.V., Sabino No. 275, Col. Sta. María la Ribera, C.P. 06400, Delegación Cuauhtémoc, México, CDMX. Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación

 

Todos los artículos publicados en Relime están bajo la Licencia Creative Commons